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• Introduction/Background
• Motivation
• Experimental Approach
• Experimental Results
• Implications
• Direction for Future Work
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Overview: Advanced Hydrocarbon Activities
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Regeneratively-cooled LREs
 

place 
tremendous heat load on fuel/coolant

Regen
 

channel environment:
• 3000 psi

 

(270 atm)
• 200 ft/s (60 m/s)
• 900°F Twc

 

(750 K)
• q″: 20-100 Btu/in2s (30-160 

MW/m2)
• Property gradients near critical 

point
• Variable fuel composition
• Turbulent, developing flow
• Material compatibility
• Reacting flow –

 

thermal/oxidative 
and pyrolytic

 

decomposition
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Engine-level design criteria drive fuel 
thermal stability research efforts 

Engine-level 
Goal:
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Root Problem: Fuel Thermal Instability
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• Film/Transpiration
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Cooling Concepts

• Hot Spots

 
Requirements

• Structural Limits
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Engine-level design criteria drive fuel 
thermal stability research efforts 

Engine-level 
Goal:

Reusability/

 
Operability

Limiting 
Obstacles:

• Deposit formation
• Surface corrosion

Root Problem: Fuel Thermal Instability

High Performance 
(Isp, T/W)

• Wall heat flux limit

 
→ Pc limit

• Regen

 

Pressure

 
Requirements

• Film/Transpiration

 
Cooling: “Degen?”

Reduced Risk

• Complicated

 
Cooling Concepts

• Hot Spots

 
Requirements

• Structural Limits

Current LRE goals, along with changing 
 cycle (RBCC/TBCC) requirements, 

 present need for better understanding 
 of rocket fuel thermal stability
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Questions to answer in considering 
hydrocarbon thermal stability

System
 Level:

Engineering/
 Design:

Chemical
 Processes:

• How are engine operability/reusability affected?
• Will temperatures remain below structural limits?
• Mission/lifetime impact on cooling system ΔP, etc.?

• Deposition: pressure drop/heat transfer tradeoff?
• How does thermal stressing affect fuel properties?
• Coking/corrosion interaction under rocket conditions?
• Roles of T, t, v, P, S, etc. on deposition/heat transfer?

• Can insoluble-forming reactions be delayed/avoided?
• Active decomposition mechanisms? Endothermicity?
• Primary deposit growth pathways? Sulfur effects?
• Measurement/modeling of decomposition rates: 

predict products, deposit growth rate, set res. time
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Composition of Various Aviation Fuels

JP-8
• ″other″

 

is 
aromatics/olefins 
(18/2 vol%)
• 500 ppm

 
total sulfur

JP-7
• ″other″

 

is aromatics
• 60 ppm

 

total sulfur

RP-1
• ″other″

 

is aromatics
• 30 ppm

 

total

 
sulfur (max)

RP-2
• ″other″

 

is mostly 
aromatics
• 0.1 ppm

 
total sulfur (max)Different composition means 

 different chemistry
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How is thermal performance gauged?
• Measured heat transfer – heat transfer rate, usually non-D
• Coking temperature – measure carbon deposit formed (or rate) 

and relate this to wall temperature, test duration, etc.
• Visual inspection of cooling channel surfaces – morphology, 

elemental composition
• Increased pressure drop across test section
• Localized temperature rise indicating thermal resistance
• Visual appearance changes (particulates, color change)
• Compositional changes in bulk fuel (e.g., GC)

9

Experimental indicators of a fuel’s 
performance as an effective coolant
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HHFF simulates cooling channel 
conditions in subscale environment

• 4500 psi

 

(31 MPa) channel 
pressure 

• 400F (480K) bulk Tin

• >10 lbm

 

/min (0.075 kg/s) 
flow rate

• >1100F (870K) Twc

• 25 PID-controlled heaters 
maintain block temperature

• O2

 

sparging

 

capability
• Vacuum environment
• Long test durations at high 

heat fluxes
• Complements existing 

HTFs
• Flexibility

 

in test section 
geometry

10

Heater 
Block

Vacuum 
Chamber
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Simplified geometry allows
 parametric fuel study

• This work is primarily a fuel study –

 
future efforts to include realistic 
geometry (Dh

 

, v, AR, alloys)
• Inexpensive, readily available, easy 

to analyze post-test
• Also allows facility shakedown
• Test section: 1/8-in. (0.32-cm) o.d.; 

0.061-in. (0.16-cm) i.d; OFE Cu; 2.5-in. 
(6.4-cm) heated length

• Current test conditions:
• 1000 psi (7 MPa) test section
• 600-1200F (590-920K) Twc

• 50-80 ft/s (15-24 m/s) Vts

• 90-320F (300-430K) Tm,i

• 15000-70000 Re
• 2 “types” of tests
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Test 
Section

Heater 
Block

q" (asymmetric)
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Typical surface temperature trace for 
short-duration heat transfer test

• Uniform: All T/Cs within 2% of average wall temperature
• Instantaneous: 800F (440K) temperature increase in ~10s (heat-up 

transient ~3% total run time for short

 

duration tests)
• High wall temperatures achievable
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Conjugate heat transfer calculations 
show circumferential variation 

• Metacomp’s
 

CFD++ 
predicts higher average

 inner wall temperature 
for given measured outer 
wall temperature

• Characteristic of 
conduction-heated rig

• Small gradient between 
measurement and lower 
Twc

• Asymmetry simulates 
real engine environment

• Must be noted when 
reporting temperatures

13
Measurement

Fluid

q" (asymmetric)

q" ≈

 

0q" ≈

 

0
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Expected heat transfer trends 
observed for short duration tests
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Expected heat transfer trends 
observed for short duration tests
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Corrected data correlates well with 
existing RP-1 heated tube results

co-mingled: a = 0.016, b = 0.862
RP-1: a = 0.012; b = 0.879
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Schematic for post-test segmenting 
and analysis of test section tubes

(~18 cm)

(6.9 cm)

(9 cm) (9 cm)
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Optical microscope images show 
coke deposit layer on middle segment

200x

200x

(middle, slight handling)

500x

(middle, slight handling)

100 μm

100 μm
50 μm
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SEM images were taken to examine 
deposit structure
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SEM/EDX analysis confirms carbon 
content of deposit formation

• Axial variation 
in carbon 
content

• Presence of 
oxygen: 
autoxidation-

 related 
deposits?

• Careful 
sample prep 
needed to 
avoid 
contaminants
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SEM comparison with standard-grade 
RP-1 thermal stress tests

RP-1 (30 ppm

 

total sulfur)
20 min. duration; 750F (670K) 

Twc

 

; 75 ft/s (23 m/s)

RP-2 (100 ppb total sulfur)
35+ min. duration; >1000F 
(810K) Twc

 

; 53 ft/s (16 m/s)

500 μm

•No obvious deposit shedding
•Surface not clean
•Very high wall temperature
•Different velocity

Stiegemeier, et al, 2004 Run 130
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LECO carbon deposition results for 
individual test segments
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Average LECO carbon deposition 
results averaged over four segments
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• The need for understanding and improving hydrocarbon 
thermal stability is motivated by current LRE engine 
program goals and future cycle requirements

• A complicated problem with many scientific questions 
provides wide-ranging opportunities for research 

• HTFs

 

can provide valuable insight –

 

AFRL’s

 

High Heat 
Flux Facility is capable –

 

realistic regen

 

conditions 
approached with RP-2

• Expected trends in heat transfer shown –

 

improved 
thermophysical

 

property information forthcoming
• Visual and SEM/EDX analysis shows carbon coverage (but 

also O) –

 

need to look at S content for Cux

 

S

 

products
• Carbon deposit formation was measured with a LECO 

carbon determinator, but repeated testing

 

at modified 
conditions is necessary to make definite conclusions on 
coking rates at maximum allowable wall temperature

• RP-2 appears more thermally stable than RP-1 at similar 
test conditions…

24

Summary & Conclusions
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All Sulfur is Not Created Equal

• Three major types of sulfur in distillate fuels

– Thiols
 

(mercaptans):  -C-SH  (<50 ppm
 

in RP-1 spec)

– Sulfides/Disulfides: -C-S-C-
 

, -C-S-S-C-

– Thiophenes:

• Recent JP-8 analyses indicate sulfur is roughly evenly 
divided between sulfides and thiophenes

 
(few thiols)

• Data indicates that mercaptans
 

are the ringleaders, 
sulfides are accomplices, and thiophenes

 
are 

bystanders in deposition

• Experience indicates that most sulfur in RP-1 is 
thiophene, and very hard to measure

S
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MIL-DTL-25576E reflects necessity for 
lower sulfur content

28
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MIL-DTL-25576E, Cont.
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Isoparaffins n-Paraffins

1-ring 
cycloparaffi 

ns

2-ring 
cycloparaffi 

ns

3-ring 
cycloparaffi 

ns
Alkylbenze 

nes

Benzo- 
cycloalkane 

s

Benzo- 
dicycloalka 

nes
Naphthalen 

es

c7 0.000 0.000 0.004 0.000 0.000 0.021 0.000 0.000 0.000

c8 0.000 0.011 0.030 0.002 0.002 0.350 0.000 0.000 0.000

c9 0.044 0.063 0.697 0.135 0.013 1.149 0.009 0.000 0.000

c10 0.590 0.244 4.154 2.372 0.113 1.848 0.132 0.000 0.003

c11 4.810 0.817 11.525 7.590 0.607 1.807 0.372 0.005 0.327

c12 8.058 0.687 10.637 6.514 1.167 1.205 0.496 0.014 0.041

c13 7.902 0.052 5.855 3.427 1.117 0.372 0.180 0.006 0.011

c14 4.465 0.136 2.580 1.585 0.608 0.048 0.018 0.000 0.000

c15 1.099 0.039 0.736 0.651 0.150 0.005 0.003 0.000 0.000

c16 0.158 0.016 0.056 0.041 0.002 0.000 0.000 0.000 0.000

sum 27.127 2.064 36.274 22.316 3.778 6.806 1.210 0.025 0.384

RP-1 Composition (WPAFB)

• GC-FIMS analysis not in total agreement with other 
methods, but gives overview of composition
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RP-1/RP-2 Comparison (ASTM D2425)

31

RP-1/5235 RP-2/5433
Summarized D2425 (vol%)
Paraffins 44 63
Cycloparaffins 33 18
Dicycloparaffins 16 14
Tricycloparaffins 2.8 4.7
Alkylbenzenes <0.5 <0.5
Indan and Tetralins <0.5 <0.5
Indenes CnH2n-10 <0.5 <0.5
Naphthalene <0.5 <0.5
Acenaphthenes <0.5 <0.5
Acenaphthylenes <0.5 <0.5
Tricyclic Aromatics <0.5 <0.5
Total 100 100
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RP-1/RP-2 Aromatic Comparison
 (ASTM D6379)

32

RP-1/5235 RP-2/5433
Monoaromatics (vol%) <0.2 0.2
Diaromatics (vol%) <0.2 <0.2
Total Aromatics (vol%) <0.2 0.2
Total Saturates (vol%) >99.8 99.8
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RP-2 Composition (NIST 2008, GC-MS)
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Realistic Heat Transfer Correlations 
are Important to Engine Design
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