Oxidation of Potential Surrogate Fuel Components of JP-8

Kenneth Brezinsky
Mechanical Engineering
University of Illinois, Chicago

2008 AFOSR MURI Meeting
Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels

September 8, 2008
Purpose of Study

- Simulate combustion behavior of JP-8 for improved combustor designs.
- Inadequate thermochemical, kinetic and transport data for JP-8 surrogate components.
- Selection of surrogate components, C8-C16 based on TSI, H/C and CN numbers.
- Potential surrogate compounds – m-xylene, 1,3,5-trimethylbenzene, n-propylbenzene, 1,2,4-trimethylbenzene, n-decane, n-dodecane and methylcyclohexane

Technical Approach

- Ignition delay studies, pyrolysis and oxidation experiments of individual surrogate fuel components, their mixtures and real fuels in the High Pressure Single Pulse Shock Tube (HPST).

- Experimental regime:
 - Temperature: 800-2500K, pressure: 10-40atm, equivalence ratios: 0.5-4.0, time: 0.5-3ms.

- Validate the experimental data against currently available literature models.

- Develop chemical kinetic models for our experimental conditions.
Shock Wave x-t Schematic

- Shock front
- Contact surface
- Reflected shock
- Rarefaction fan
- Reflected rarefaction

Driver Driven

Diaphragm

Head Tail

Distance x

Time t
Shock Tube Facility

HPST Facility

Sampling

Analytical: GC/MS, GC/FID-TCD

HPST Operating Conditions
Temperatures: 600-2500 K
Pressures: 5-1000 atm
Reaction Times: 0.5-3.0 ms
Analysis of diesel fuel; LECO CORPORATION, Separation Science Technical Note.
m-Xylene Oxidation Modeling
P=22 bar, Φ=0.35

Program: CHEMKIN version 3.6.2
Subroutine: SENKIN

- Time evolution of homogeneous reacting gas mixtures in closed vessel.
- First order kinetic sensitivity analysis with respect to reaction rates.

Chemical kinetics models:

- Dagaut et al. (2007) model
 - Validated for jet-stirred reactor data at P = 1 atm, Φ = 0.5-1.5, 900-1400K.

- Battin-Leclerc et al. (2005) model
 - Modeling of ortho-, meta- and para-xylenes.
 - Validated for ignition delay times in shock tube, P = 6.7 to 9 bar, Φ = 0.5-2, 1330-1800K.

m-Xylene Oxidation, P=22 bar, Φ=0.35

Preliminary data-subject to revision

- m-C₆H₁₀
- C₆H₅CH₃
- O₂
- C₆H₆
- CO
- C₂H₂

Reflected Shock Temperature/K

Mole fraction/ppm

■ Experiment ▲ Battin-Leclerc Model △ Dagaut Model
UIC m-Xylene Model:

- A hierarchical structure based on High Pressure Toluene Oxidation Model4.
- Elementary reactions of sequential oxidation and methyl side chains abstraction of m-xylene added to the High Pressure Oxidation Model.
- Thermochemistry of the species taken from Dagaut Model.

Sensitivity Analysis

Oxidation of m-Xylene, P=22 bar, $\phi=0.35$

Sensitivity Analysis of CO, $t = 2.1$ ms

Rxn # Reaction in ‘UIC m-Xylene Model’

- **G2.** $\text{H} + \text{O}_2 = \text{OH} + \text{O}$
- **G5.** $\text{H} + \text{O}_2 (+\text{M}) = \text{HO}_2 (+\text{M})$
- **G14.** $\text{O} + \text{HO}_2 = \text{O}_2 + \text{OH}$
- **G127.** $\text{CO} + \text{OH} = \text{CO}_2 + \text{H}$
- **G456.** $\text{C}_6\text{H}_5\text{O} = \text{CO} + \text{C}_5\text{H}_5$
- **G527.** $\text{C}_6\text{H}_5\text{O} + \text{O} = \text{C}_6\text{H}_4\text{O}_2 + \text{H}$
- **G534.** $\text{MXYLEL} + \text{H} = \text{MXYLENE}$
- **G535.** $\text{MXYLENE} + \text{H} = \text{C}_6\text{H}_5\text{CH}_3 + \text{CH}_3$
- **G536.** $\text{MXYLENE} + \text{H} = \text{MXYLEYL} + \text{H}_2$
- **G544.** $\text{MXYLEYL} + \text{O} = \text{C}_8\text{H}_8\text{O} + \text{H}$
- **G571.** $\text{OC}_2\text{H}_7 = \text{CO} + \text{OC}_6\text{H}_7$
- **G577.** $\text{OC}_2\text{H}_7 + \text{H} = \text{CH}_3\text{C}_6\text{H}_4\text{OH}$

Normalized Sensitivity Coefficient

- $T = 1342K$
- $T = 1283K$
- $T = 1170K$
m-Xylene Oxidation, $P=22$ bar, $\Phi=0.35$

Preliminary data—subject to revision

- **m-C$_8$H$_{10}$**
- **C$_2$H$_2$**
- **C$_6$H$_6$**
- **O$_2$**
- **C$_6$H$_5$CH$_3$**

Experiment, UIC m-Xylene Model, Battin-Leclerc Model
1,3,5-Trimethylbenzene Oxidation Modeling

P=24 bar, \(\Phi=1.26 \)

UIC m-Xylene Model

- Sequential oxidation reactions of 1,3,5-trimethylbenzene
- Methyl side chain abstraction reactions of 1,3,5-trimethylbenzene

Chemical kinetics Mechanism:
- Based on m-xylene oxidation mechanism\(^5\).

UIC 135TMB Model:
- Detailed chemical kinetic model unavailable in literature.
- 13 species and 41 reactions added to the UIC m-Xylene Model.
- Arrhenius parameters taken from analogous toluene reactions from High Pressure Toluene Oxidation Model.

Thermochemistry

- ΔH^0_{298K} of stable compounds determined using Group Additivity based Estimates6.

- DFT calculation done for radicals using Gaussian 03, Scheme: B3LYP/6-31G(d).

- ΔH^0_{0K} of radicals determined using Ring Conserved Isodesmic Reaction Scheme7 and DFT energies.

- ΔH^0_{298K} estimated using DFT energies and statistical mechanics.

- NASA polynomials obtained through FITDAT utility in CHEMKIN 3.7.

1,3,5-Trimethylbenzene Oxidation

P=24 bar, $\Phi=1.26$

Preliminary data-subject to revision

- **C_9H_{12}**
- **O_2**
- **CO**
- **CO_2**
- **C_2H_4**
- **C_2H_2**

Experiment UIC 135TMB Model
n-Propylbenzene Oxidation Modeling
P=17 bar, Φ=0.55

- Program: CHEMKIN version 3.6.2
- Subroutine: SENKIN
- Chemical kinetics model:
 - Dagaut et al. (2002)\(^8\) model
 - Validated for jet-stirred reactor data at P = 1atm, Φ = 0.5-1.5, 900-1250K

n-Propylbenzene Oxidation, P=17 bar, Φ=0.55

Preliminary data subject to revision

- **C₉H<sub>12** (n-Propylbenzene)
- **O<sub>2**
- **CO**
- **C₂H<sub>4** (Ethylene)
- **CO<sub>2**
- **C₇H<sub>8** (Methylbenzene)

Graphs:
- Mole Fraction (ppm) vs. Reflected Shock Temperature (K)

Legends:
- ■ Experiments
- ○ Dagaut’s Model
1,3,5-Trimethylbenzene and n-Propylbenzene Mixture (1.5:1)

Decay of 1,3,5-Trimethylbenzene with and without n-Propylbenzene

Decay of n-Propylbenzene with and without 1,3,5-Trimethylbenzene

Reflected Shock Temperature /K

Preliminary data-subject to revision
HPST:

- Oxidation experiments of m-xylene, 1,3,5-trimethylbenzene and n-propylbenzene and a mixture of 1,3,5-trimethylbenzene and n-propylbenzene.
- Experimental conditions:
 - Temperature: 924-1587K, pressure: 17-24bar, equivalence ratio: 0.35-1.4, residence time: 0.5-3ms.

Modeling:

- Preliminary oxidation models developed for m-xylene and 1,3,5-trimethylbenzene
- Validated n-propylbenzene experimental data using Dagaut’s model.
Future Work

- Oxidation and pyrolytic experiments on surrogate fuel mixtures and real fuels.
- Development of m-xylene and 1,3,5-trimethylbenzene models by inclusion of more comprehensive fuel decay pathways.
Acknowledgements

AFOSR MURI FA9550-07-1-0515
PI: Professor F.L. Dryer
http://www.princeton.edu/~combust/MURI

HPST Laboratory Students
Dr. R. Sivaramakrishnan