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Motivation

• Detailed kinetic models will aid in the development and optimization of 
the next series of advanced air-breathing propulsion systems and their 
use with alternative fuels

– Model development and verification require quantitative characterization of 
combustion properties

• Oxidation at low and intermediate temperatures (600-1100 K) is 
important in some engine designs

– High-quality, reproducible data quantifying the combustion of jet fuel 
reference components at these conditions is scarce
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Alkane Oxidation Mechanism

• CO is the major indicator of reactivity at low temperatures
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Program Overview

• Objectives: 1) Explore the preignition oxidation behavior of petroleum 
and alternative jet fuel surrogate components

2) Quantify the combustion properties of the surrogate 
components

3) In Year 1, n-dodecane studies

• Approach:
– React the fuel/oxidizer/diluent systems under well-controlled conditions in 

our Pressurized Flow Reactor (PFR) 
» Perform bench scale tests on n-dodecane

• Coordinate with Stanford flow reactor experiments at higher temperatures

» Monitor reactivity and collect gas samples as a function of experimental and 
reactant conditions

» Perform detailed chemical analysis of extracted gas samples

– Mechanistic analysis and development
– Provide data for USC chemical kinetic model development
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PFR Facility
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Representative Reactivity Map Profile
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GC/MS/FID Facility

• Samples from PFR collected in 10-ml loops in sample storage cart heated to 
180°C

• Samples injected into GC/MS/FID for analysis

• Separation aided by sub-ambient initial oven temperature

• Identification performed by mass spectra compared to NIST MS Version 2.0

• Supelco Petrocol DH column in GC
– 100 m, 0.5 µm film thickness 
– 0.25 mm OD, 1250 Phase Ratio (β)

• MS parameters
– Ion source 200°C
– Electron ionization -70 eV
– Multiplier voltage 1456 V
– Emission current 100 µΑ

GC temperature ramp
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Other Measurements

• Measure CO/CO2/O2 with on-line analysis
– Errors are 50 ppm for CO and CO2, and 1250 ppm for O2

• Measure F/O2 ratios with Total Hydrocarbon Analyzer combined with 
O2 Analyzer to calibrate equivalence ratio before each experiment

• Calibration of lighter hydrocarbons is achieved with FID calibration 
using purchased gas-phase standards at 15, 100, and 1000 ppm

• Calibration of heavier species is achieved with correction factors of 
FID signals that account for differences in carbon, hydrogen, and 
oxygen numbers between different molecules of similar structures 
(Schofield, 2008)

• In current results, uncertainties are 1 standard deviation of two 
experiments (Exp 1+2) with similar initial conditions
– Uncertainty calculations will improve with additional experiments

Schofield, K. (2008).  Prog Energ Combust 34:330-350.
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Experimental Conditions

Exp 1 (5/14/08)   
“M Phi #1”

Exp 2 (5/28/08)   
“M Phi #2”

Exp 3 (6/23/08)  
“H Phi”

Exp 4 (7/28/08) 
“L Phi”

n-Dodecane (ppm) 1297 1529 1667 519

O2 (ppm) 37700 37500 35200 42000

φ 0.64 0.75 0.88 0.23

N2 (ppm) 961000 961000 963100 957500

• Equivalence ratios for Exp 1 and Exp 2 are essentially identical, 
considering uncertainties in O2 and n-dodecane

• Exp 4 was conducted to reduce hydrocarbon loading on experiment

• For all experiments, pressure maintained at 8.000 0.025 atm and 
residence time maintained at 120 10 ms
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CO

• Peak CO production 
of Moderate Phi #1 
and #2 are within 
uncertainty
– 50 ppm 

uncertainty in CO

• High Phi produced 
only slightly more 
CO than Moderate 
Phi’s

• Low Phi had much 
lower initial n-
dodecane molar 
fraction
– NTC region 

started at lower 
temperature
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CO2

50 ppm uncertainty in CO2
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n-Dodecane

• All experiments 
exhibited similar n-
dodecane molar 
fractions at 670-745 K

• Low Phi had 
significantly lower 
initial molar fraction
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Alkane Oxidation Mechanism – Alkene Formation

• In general, alkenes produced from β-scission of alkyl (R.) and 
alkylhydroperoxy (QOOH.) radicals, and from O2 addition to alkyl 
radicals
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Alkenes

• Decrease in light alkenes at 805-820 K 
temperatures appears in Low Phi experiment
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1-Butene
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Alkenes
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Alkenes
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Alkenes
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Alkenes

M Phi #1
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• Several dodecene isomers are shown lumped as 
overlapping of GC peaks makes positive 
identification difficult
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Alkane Oxidation Mechanism – Aldehyde Paths

• In general, aldehydes produced from decomposition of 
ketohydroperoxides (OROOH) , β-scission of alkylhydroperoxy 
(QOOH.) radicals, and destruction of alkylperoxy (RO2

.) radicals
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Aldehydes
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Pentanal
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Aldehydes
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Aldehydes
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2-Nonanone 

0

1

2

3

4

5

600 650 700 750 800 850

Temperature (K)

M
o

la
r 

fr
a

c
ti

o
n

 (
p

p
m

)

24

Ketones
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Ketone-substituted iso-Dienes
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Enones

M Phi #1
M Phi #2
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Dihydro-2(3H)-furanone (C4H6O2)
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Lactones (Cyclic Esters)

M Phi #1

M Phi #2

H Phi

L Phi

• Must be cautious about sampling

– dihydro-2(3H)-Furanone (γ-
butyrolactone) is easily 
produced from oxidation of 
tetrahydrofuran via catalysis

– Lactone can be produced from 
condensation of molecule with 
alcohol group and carboxylic 
acid group (such as alkanoic 
acids with hydroxyl groups)

– Further investigation underway

tetrahydrofuran
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Alkyl-substituted Lactones

M Phi #1
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Dihydro-5-ethyl-2(3H)-furanone (C6H10O2)
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Alkyl-substituted Lactones
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Alkane Oxidation Mechanism – Cyclic Ether Paths

• In general, cyclic ethers produced from decomposition of 
alkylhydroperoxy (QOOH.) radicals

HOORROOHRORRRH RHMOH  +→+→ →←→ +++−
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2

2

2' OOROR ++ 

OROR  '+

2'OR +

RH+

CORORCOHRCHOOHROOHQ MO +→+→+→ ++ 
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Ester-substituted Cyclic Ethers

M Phi #1

M Phi #2

H Phi
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• Low GC peak made identification 
questionable
– Experiments at higher fuel 

loadings may increase 
identification capabilities
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Alkyl-substituted Furans

M Phi #1
M Phi #2

H Phi
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• Possible dehydrogenation of 2-ethyl-5-
methyl-tetrahydrofuran (a cyclic ether)

2-ethyl-5-methyl-tetrahydrofuran
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Highlights and Ongoing / Future Work

• Four detailed experiments on the oxidation of n-dodecane in our PFR 
with NDIR and GC/MS/FID analysis have been conducted

• Over 30 species have been identified and quantified in the oxidation of 
n-dodecane at low and intermediate temperatures

• Further studies at similar initial conditions will be conducted to test for 
reproducibility so that experimental uncertainties can be characterized 
with high accuracy

• Collaboration with Hai Wang is underway so that our data are used in 
the development of the USC chemical kinetic model

• Coordination with Tom Bowman is underway so that our low and 
intermediate temperature flow reactor experiments mesh with the 
Stanford intermediate and high temperature flow reactor experiments

• Next hydrocarbon will be selected in collaboration with the consortium
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