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Long-Term Objectivesg j

 To develop improved detailed mechanisms for jet fuel p p j
surrogates through a collaborative research effort by the 
AF-IPT team

 Stanford contribution: Fundamental kinetics database for 
jet fuel surrogates using shock tube/laser absorption 

t i l d d t f i iti d l ti dmeasurements; includes data for ignition delay times and 
multi-species concentration time-histories

 Stanford contribution: Improve knowledge of specific 
elementary reaction rates through targeted experiments 
(indirect and direct)(indirect and direct)
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Stanford Shock Tube & Laser Facilities

 Advantages of Shock Tubes
 Near-Ideal Constant Volume Test Platform Transmitted Beam 
 Well-Determined Initial T & P
 Clear Optical Access for Laser Diagnostics
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Topic 1: Ignition Delay Times - Current Statusp g y

 Surrogate Fuels Studied

 Year 1: Large normal alkanes
 n-pentane, n-hexane, n-octane, n-nonane

 Year 2: n-dodecane, cyclo-alkanes, 
 n-dodecane (C12H26)

 cyclohexane (CH), methylcyclohexane (MCH), butylcyclohexane (BCH)

 Goal: High-quality dataset for jet fuel surrogates over a 
uniform range of conditions:

4% O2,  =0.5-1.0, 1.5-3.0 atm, 1200-1600 K
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C4 – C9 N-Alkane Ignition   (Year 1)
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 Achieve goal of high-quality, low scatter data

 Well-defined values for EA

 Small systematic variation of ignition delay time with carbon no. (ign ~ C#-0.4)

6



C4 – C9 N-Alkane Ignition   (Year 1)
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 Small systematic variation of ignition delay time with carbon no. (ign ~ C#-0.4)
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 JetSurF 0.2: some differences from experiment (but within USC uncertainty limits)

 SU data will facilitate JetSurF 1.1 model refinements, especially at low T



N-Dodecane (C12H26) Ignition   (Year 2)( 12 26) g ( )
Low P, High T
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 Low P, High T: JetSurF 0.2 agrees with data at T ~1500 K, but overpredicts EA
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N-Dodecane (C12H26) Ignition   (Year 2)( 12 26) g ( )
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and varies widely from data at T<800K

 SU data will provide useful targets for refinements to JetSurF, especially at low T



Cyclo-Alkane Ignition (Year 2):
Relative Ignition Delays for CH, BCH and MCHRelative Ignition Delays for CH, BCH and MCH
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 CH and BCH ignition delay times similar to n-hexane

 MCH ignition distinctly slower than BCH and CH
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MCH ignition distinctly slower than BCH and CH

 Variation in ignition times can provide insight to decomposition pathways



Methylcyclohexane:
Comparison with JetSurF 1.1 ModelComparison with JetSurF 1.1 Model  
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and EA at  = 1.0
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Methylcyclohexane:
Comparison with JetSurF 1.1 ModelComparison with JetSurF 1.1 Model  
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 Relatively good agreement at  = 0.5; but model slightly 

overpredicts ign



Cyclohexane:
Comparison with JetSurF 1.1 ModelComparison with JetSurF 1.1 Model  
CH/4%O2/Ar, 1.5 atm, =1.0
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 Relatively good agreement between JetSurF 1.1 and Stanford data, 
but model slightly underpredicts ign at  = 1.0
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Cyclohexane:
Comparison with JetSurF 1.1 ModelComparison with JetSurF 1.1 Model  
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 Very good agreement at  = 0.5



Butylcyclohexane:
Comparison with JetSurF 1.1 ModelComparison with JetSurF 1.1 Model  
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 Good agreement between JetSurF 1.1 and Stanford data, but model 
slightly underpredicts ign at  = 0.83

15

g y p ign 



Butylcyclohexane:
Comparison with JetSurF 1.1 ModelComparison with JetSurF 1.1 Model  
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Ignition Delay Times - Summaryg y y

 High-quality ign dataset now available for key jet fuel g

surrogates at high T:

 Large normal alkanes (C5-C12) Large normal alkanes (C5 C12)
 n-pentane, n-hexane, n-octane, n-nonane, n-dodecane

 Cyclo-alkanes
Cyclohexane methylcyclohexane butylcyclohexane Cyclohexane, methylcyclohexane, butylcyclohexane

 Next Step: branched alkanes (year 3) Next Step: branched alkanes (year 3)
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Ignition Delay Times - Summaryg y y

 High-quality ign dataset now available for key jet fuel g

surrogates at high T:

 Large normal alkanes (C5-C12)
JetSurF

 Large normal alkanes (C5 C12)
 n-pentane, n-hexane, n-octane, n-nonane, n-dodecane

 Cyclo-alkanes
Cyclohexane methylcyclohexane butylcyclohexane

 Some room
for improvement

 Cyclohexane, methylcyclohexane, butylcyclohexane

 Next Step: branched alkanes (year 3) Next Step: branched alkanes (year 3)
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Ignition Delay Times - Summaryg y y

 High-quality ign dataset now available for key jet fuel g

surrogates at high T:

 Large normal alkanes (C5-C12)
JetSurF

 Large normal alkanes (C5 C12)
 n-pentane, n-hexane, n-octane, n-nonane, n-dodecane

 Cyclo-alkanes
Cyclohexane methylcyclohexane butylcyclohexane

 Some room
for improvement

 A ll Cyclohexane, methylcyclohexane, butylcyclohexane

 Next Step: branched alkanes (year 3)

 Agrees well 
with data

 Next Step: branched alkanes (year 3)
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Topic 2: Multi-Species Time-Histories – Current Statusp p

 Surrogate Fuels Studied:
N Heptane N-Heptane

 N-Dodecane
 Methylcyclohexane (MCH)

 Standard Conditions:
 P = 2 atm
 = 1 0 = 1.0
 T = 1250-1650K
 Xfuel = 300-500 ppm

 Goal: develop multi-species database for oxidation and 
pyrolysis systems with time-histories of several key species:  
fuels radicals stable intermediates products and temperature

20

fuels, radicals, stable intermediates, products, and temperature



Multi-Species Diagnostics Methods

Currently In Use
 Fuels/Alkanes : C7H16 (3 39 m) Fuels/Alkanes : C7H16 (3.39 m)
 Stable Intermediates/Alkenes:  C2H4 (10.57 m)
 Small Radicals: OH (306 nm) 
 Products: H2O, CO2 (2.5, 2.7 m)

In Development
 Alkyl Radicals: CH3, C2H5 (216 & 245 nm)

Peroxide Species: HO /H O (225 & 240 nm) Peroxide Species: HO2/H2O2 (225 & 240 nm) 
 Alkanes: Methane, Ethane, Propane ( 3.4 m)
 Alkenes: propene, butene (11 m, 3 m)

 First multi-species application to jet fuel surrogate oxidation:
n-heptane, n-dodecane, methylcyclohexane
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Diagnostic development funded by other programs (mostly AFOSR)



Laser Absorption Systems: Minimum Detectivity

 Ring-dye lasers with second 
harmonic generation (SHG):
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Example Experimental Setup:
Ring Dye Laser for OH, CH, NH2g y , , 2

Beer-Lambert Law:

(I/I0) = exp {- S(T) (T,P,xi) P Xi L}

Spectral parameters S & determined at Stanford

Detector

Pump laser

Power
Meter

Fabry-Perot
Etalon

Wave-

I0 532 nm

Tunable Ring-
Dye Laser

VIS

Wave
meter

I
306.7 nm 613 nm

Reference 
Beam

Di i
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Multi-Species Time-Histories: n-Heptane Oxidation
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 Successful application of multi-species method to n-heptane

 Enables evaluation (and refinement) of model sub-mechanisms: e.g.

[ ]

 Enables evaluation (and refinement) of model sub mechanisms: e.g. 
decomposition pathways, induction time, exponential radical growth
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Relative Performance of 
Well-Established Models for n-Heptane Oxidation
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Relative Performance of 
Well-Established Models for n-Heptane Oxidation
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Relative Performance of 
Well-Established Models for n-Heptane Oxidation
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 Both models perform well, but multi-species time-history data is 
sufficiently accurate to enable some refinements in both mechanisms

[ ] [ ]

 Kinetic analyses (e.g. rate of production and sensitivity) provide critical links 
from data to model, and guide mechanism refinement
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Example: Heptane Decomposition Kinetic Analysis

0.0s]

Heptane ROP 1500K, 2 atm, =1
300ppm heptane

4

Ethylene ROP

-0.5

C7H16+H = C7H15+H2

 [1
0-4

 m
ol

/c
c/

s

3

4

C2H5=H+C2H4
C3H7=CH3+C2H4 
C H C H C H4  m

ol
e/

cc
/s

]

-1.5

-1.0
 C7H16+H = C7H15+H2
 C7H16 = C6H13+CH3
 C7H16 = C5H11+C2H5 
C7H16 = C4H9+C3H7H

ep
ta

ne
 R

O
P

  

1

2
C4H9=C2H4+C2H5
C5H11=C2H4+C3H7

2H
4 

R
O

P
  [

10
-4

0 10 20 30 40
-2.0

 C7H16 = C4H9+C3H7
 

H

Time  [s]
0 10 20 30 40

0

C
2

Time  [s]

 ROP shows that primary n-heptane decomposition pathway (Dryer 2006) is:   
n-heptane  C4H9+C3H7

 Ethylene formed by secondary alkyl radical decomposition (C2H4 ROP) Ethylene formed by secondary alkyl radical decomposition (C2H4 ROP) 
 Large ethylene yields (2 C2H4 per C7H16) predicted by recent mechanisms 

confirmed with Stanford laser absorption data
28 Modeling using Dryer (2006)



Multi-Species Time Histories - Summaryp y

 High-quality, multi-species datasets now available for 
oxidation of key jet fuel surrogates:oxidation of key jet fuel surrogates:

N-Heptane
N-Dodecane
Methylcyclohexane

 Next Steps: 
 Expand range (T, P, mixtures) of experiments
 Measure additional intermediate species, including: Measure additional intermediate species, including:

simple alkanes (methane, ethane)
higher alkenes (propene, butene)
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Future Work (Year 3): Iso-Alkanes( )
 2,5-dimethylhexane

 Need for branched alkane surrogate g
candidates
 End-to-end symmetry?
 Dimethyl alkane?

 2,4-dimethylpentane

et y a a e
 Large carbon number??
 Economical??

 Potential candidates:
 2,5-dimethylhexane (DMH)
 2,4-dimethylpentane  (DMP)

 2,2,4-trimethylpentane
(iso-octane)

, y p ( )
 2,2,4-trimethylpentane (iso-octane) 

allows for comparison with DMP
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Stanford Program Summary/Plans:g y/

Achievements:
 Measured ignition delay times (n-alkanes, cyclo-alkanes, branched 

alkanes)

 Measured multi-species time-histories (fuel, OH, C2H4, H2O, CO2) in 
decomposition and oxidation of 3 jet fuel surrogatesdecomposition and oxidation of 3 jet fuel surrogates
(n-heptane, n-dodecane, MCH)

Next Steps:Next Steps:
 Expand range of databases (T, P, mixtures)

 Multi-species measurements of branched alkanes (e.g. di-methyl 
lk ) d ( l )alkanes) and aromatics (e.g. toluene)

 Apply new IR diagnostics methods to measure methane, ethane, 
higher alkenes in pyrolysis/oxidation of targeted fuels
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