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= LONg-Term Objectives
1

= To develop improved detailed mechanisms for jet fuel
surrogates through a collaborative research effort by the
AF-1PT team

=» Stanford contribution: Fundamental kinetics database for
jet fuel surrogates using shock tube/laser absorption
measurements; includes data for ignition delay times and
multi-species concentration time-histories

=» Stanford contribution: Improve knowledge of specific
elementary reaction rates through targeted experiments
(indirect and direct)



Stanford Shock Tube & Laser Facilities
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" Topic 1: Ignition Delay Times - Current Status
=1 1

= Surrogate Fuels Studied

= Year 1: Large normal alkanes
= N-pentane, n-hexane, n-octane, n-nonane

= Year 2: n-dodecane, cyclo-alkanes,
» N-dodecane (C;,Hg)
= cyclohexane (CH), methylcyclohexane (MCH), butylcyclohexane (BCH)

= Goal: High-quality dataset for jet fuel surrogates over a
uniform range of conditions:

4% 0,, ¢=0.5-1.0, 1.5-3.0 atm, 1200-1600 K



=B Stanford ST Study
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= Achieve goal of high-quality, low scatter data
= Well-defined values for E,
= Small systematic variation of ignition delay time with carbon no. (t
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C, — Cy N-Alkane Ignition (Year 1)

Stanford ST Study JetSurF 0.2 Model
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= Achieve goal of high-quality, low scatter data

= Well-defined values for E,

= Small systematic variation of ignition delay time with carbon no. (t;,, ~ C#°4)

= JetSurF 0.2: some differences from experiment (but within USC uncertainty limits)
=» SU data will facilitate JetSurF 1.1 model refinements, especially at low T



Ignition Delay Times [us]

N-Dodecane (C,,H,¢) Ignition (Year 2)
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Low P, High T: JetSurF 0.2 agrees with data at T ~1500 K, but overpredicts E,
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Ignition Delay Times [usS]
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Low P, High T: JetSurF 0.2 agrees with data at T ~1500 K, but overpredicts E,

High P, Low T: JetSurF 0.2 agrees with data near 1000 K, slightly overpredicts t;q,

and varies widely from data at T<800K
=>» SU data will provide useful targets for refinements to JetSurF, especially at low T
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at high T



Cyclo-Alkane Ignition (Year 2):
Wy Relative Ignition Delays for CH, BCH and MCH
ol
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= CH and BCH ignition delay times similar to n-hexane

= MCH ignition distinctly slower than BCH and CH
= Variation in ignition times can provide insight to decomposition pathways
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Methylcyclohexane:
W Comparison with JetSurF 1.1 Model
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= Excellent agreement between JetSurF 1.1 and Stanford data for 7,
and E, at ¢ = 1.0



Methylcyclohexane:
W Comparison with JetSurF 1.1 Model
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= Excellent agreement between JetSurF 1.1 and Stanford data for 7,
and E, at ¢ = 1.0

= Relatively good agreement at ¢ = 0.5; but model slightly

overpredicts T,



Cyclohexane:

W Comparison with JetSurF 1.1 Model

Ignition Delay (us)
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= Relatively good agreement between JetSurF 1.1 and Stanford data,

but model slightly underpredicts 1, at ¢ = 1.0
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Ignition Delay (us)

Cyclohexane:

W Comparison with JetSurF 1.1 Model

=B cH/a%0,/Ar, 1.5 atm, ¢=1.0 CH/4%0,/Ar, 1.5 atm, ¢=0.5
10%¢ - 10° ¢ -
Y { )

103 S 103

[ > N

Stanford =

_ Data %
102 JetSurF 1.1 s el
101 ! ! ] | ] 101 ] ] ] ] ]

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.60 0.65 0.70 0.75 0.80 0.85 0.90
1000K /T 1000K /T

= Relatively good agreement between JetSurF 1.1 and Stanford data,

but model slightly underpredicts 1, at ¢ = 1.0

= Very good agreement at ¢ = 0.5



Butylcyclohexane:
W Comparison with JetSurF 1.1 Model
wE BCH/4%0,/Ar, 1.5 atm, $=0.83
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= Good agreement between JetSurF 1.1 and Stanford data, but model

slightly underpredicts t;;, at ¢ = 0.83
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Butylcyclohexane:
W Comparison with JetSurF 1.1 Model

= BCH/4%0,/Ar, 1.5 atm, $=0.83  BCH/4%0,/Ar, 1.5 atm, $=0.45
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= Good agreement between JetSurF 1.1 and Stanford data, but model

slightly underpredicts t;;, at ¢ = 0.83

= Excellent agreement at ¢ = 0.45!



T Ignition Delay Times - Summary
ol

o High-quality T;,, dataset now available for key jet fuel

surrogates at high T:

o Large normal alkanes (C.-C,,)
o nh-pentane, n-hexane, n-octane, n-nonane, n-dodecane

o Cyclo-alkanes
a Cyclohexane, methylcyclohexane, butylcyclohexane

o Next Step: branched alkanes (year 3)

17
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Ignition Delay Times - Summary

High-quality T, dataset now available for key jet fuel

surrogates at high T:

a Large normal alkanes (Cs-C,,) JetSurk
- n-pentane, n-hexane, n-octane, n-nonane, n-dodecane € S_Ome room
for improvement

o Cyclo-alkanes
a Cyclohexane, methylcyclohexane, butylcyclohexane

Next Step: branched alkanes (year 3)



T Ignition Delay Times - Summary
ol

o High-quality T;,, dataset now available for key jet fuel

surrogates at high T:

a Large normal alkanes (Cs-C,,) JetSurk
a n-pentane, n-hexane, n-octane, n-nonane, n-dodecane € S_Ome room
for improvement

o Cyclo-alkanes
a Cyclohexane, methylcyclohexane, butylcyclohexane € Agrees well

with data

o Next Step: branched alkanes (year 3)

19
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Topic 2: Multi-Species Time-Histories — Current Status

= Surrogate Fuels Studied:
= N-Heptane
= N-Dodecane
= Methylcyclohexane (MCH)

s Standard Conditions:
= P=2atm
s =10
= [ = 1250-1650K
s Xer = 300-500 ppm

s Goal: develop multi-species database for oxidation and
pyrolysis systems with time-histories of several key species:
fuels, radicals, stable intermediates, products, and temperature
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Multi-Species Diagnostics Methods

Currently In Use

= Fuels/Alkanes : C;H,

= Stable Intermediates/Alkenes: C,H,
= Small Radicals: OH

= Products: H,0, CO,

In Development

= Alkyl Radicals: CH;, C,H:

= Peroxide Species: HO,/H,0,

= Alkanes: Methane, Ethane, Propane
= Alkenes: propene, butene

(3.39 um)
(10.57 um)
(306 nm)
(2.5, 2.7 um)

(216 & 245 nm)
(225 & 240 nm)
(3.4 um)

(11 um, 3 um)

=>» First multi-species application to jet fuel surrogate oxidation:
n-heptane, n-dodecane, methylcyclohexane

Diagnostic development funded by other programs (mostly AFOSR)
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Laser Absorption Systems: Minimum Detectivity
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Example Experimental Setup:
Ring Dye Laser for OH, CH, NH,

Beer-Lambert Law:
(1/15) = exp {- S(T) ©(T,P,x) P X L}

Spectral parameters S & @ determined at Stanford
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| | Bga?;ence \—»{ Tunable Ring-
| 306.7 nm Dye Laser 613 nm}
| I | | A >
__ _\\ Diagnostic uv VIS
[ ﬁam OH Laser
23 Shock-heated gases AbSOI’ption




T Multi-Species Time-Histories: n-Heptane Oxidation

N-Heptane Oxidation 1494K

1494K, 2.15atm
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First test of multi-species strategy:
N-Heptane mechanism well-developed
High SNR data

Excellent shock-to-shock repeatability
(£ 10K)

Optimized fuel concentration selection
allows useful data over entire ignition
process (two orders of magnitude
coverage in species concentration)

[ Successful application of multi-species method to n-heptane

O Enables evaluation (and refinement) of model sub-mechanisms: e.qg.
decomposition pathways, induction time, exponential radical growth
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100 |

Relative Performance of
Well-Established Models for n-Heptane Oxidation
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Relative Performance of
Well-Established Models for n-Heptane Oxidation

JetSurF 0.2 (2008) Chaos et al. (2007)
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Well-Established Models for n-Heptane Oxidation

Relative Performance of

JetSurF 0.2(2008)

1000 +300ppm heptane, ¢=1

100

Mole Fraction [ppm]

1494K, 2.15atm

-— e
e o ™

T

Chaos et al. (2007)

1494K, 2.15 atm
1000 | 300ppm heptane, ¢=1
5
Q.
k="
c
o
Q
S 100 |
T -
[}
[s)
=
el 10 A
1000 10

100
Time [us]

O Both models perform well, but multi-species time-history data is

sufficiently accurate to enable some refinements in both mechanisms

O Kinetic analyses (e.g. rate of production and sensitivity) provide critical links
from data to model, and guide mechanism refinement
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L.
S

Heptane ROP [lO'4 mol/cc/s]
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Example: Heptane Decomposition Kinetic Analysis

1500K, 2 atm, ¢=1
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C,Hg=H+C,H,
/ CqH-=CHg+CoH,
4Hg=CoHy+CoHg
CgH11=CoHg*C3Hy7

C7H16tH=CoH15+H)
C7H16 = CgH137CH3
C7H16 = C5H11+CoH5
CoHqg = C4Hg+CaH7

C2H4 ROP [10™* mole/cc/s]
N
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Time [us]

40
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ROP shows that primary n-heptane decomposition pathway (Dryer 2006) is:
n-heptane - C,Hy+C3H,
Ethylene formed by secondary alkyl radical decomposition (C,H, ROP)

Large ethylene yields (2 C,H, per C,H,,) predicted by recent mechanisms

confirmed with Stanford laser absorption data Modeling using Dryer (2006)



T Multi-Species Time Histories - Summary
ol

o High-quality, multi-species datasets now available for
oxidation of key jet fuel surrogates:
N-Heptane
N-Dodecane
Methylcyclohexane

o Next Steps:
o Expand range (T, P, mixtures) of experiments

o Measure additional intermediate species, including:
simple alkanes (methane, ethane)
higher alkenes (propene, butene)
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m Future Work (Year 3): Iso-Alkanes
ol = 2,5-dimethylhexane
= Need for branched alkane surrogate iHa oH
) 3
candidates HaC
= End-to-end symmetry? CHs
= Dimethyl alkane?
= Large carbon number?? = 2 4-dimethylpentane
= Economical?? ’

= Potential candidates: HaC CHs

= 2,5-dimethylhexane (DMH)
= 2,4-dimethylpentane (DMP)

= 2,2,4-trimethylpentane (iso-octane) = 2,2,4-trimethylpentane
allows for comparison with DMP (iso-octane)
CH; CHs
H3C CHs

CHa
30



T Stanford Program Summary/Plans:

31

Achievements:

Measured ignition delay times (n-alkanes, cyclo-alkanes, branched
alkanes)

Measured multi-species time-histories (fuel, OH, C,H,, H,O, CO,) Iin
decomposition and oxidation of 3 jet fuel surrogates
(n-heptane, n-dodecane, MCH)

Next Steps:

Expand range of databases (T, P, mixtures)

Multi-species measurements of branched alkanes (e.g. di-methyl
alkanes) and aromatics (e.g. toluene)

Apply new IR diagnostics methods to measure methane, ethane,
higher alkenes in pyrolysis/oxidation of targeted fuels
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