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Outline of TopicsOu o op s

1. Development of second-generation aerosol shock tube p g
and its application to n-dodecane and diesel ignition

2. Ignition measurements of cyclic jet fuel surrogate 
components: toluene and methylcyclohexane (MCH)components: toluene and methylcyclohexane (MCH)

3. Extension of the operating regime and capabilities of 
conventional shock tubes

4. Successful resolution of apparent discrepancy in low-T 
propane ignition delay times 
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Topic 1: Development of Second-Generation
Aerosol Shock Tube (AST 2)

 First-generation aerosol shock tube (AST 1)

Aerosol Shock Tube (AST 2)

 Turbulence-based filling method – some limitations on fuel loading range, 
uniformity and reproducibility

 Second-generation aerosol shock tube (AST 2)Second generation aerosol shock tube (AST 2)
 New plug-flow-based aerosol delivery system allows partial ST filling
 Improved spatial uniformity of the aerosol by pre-mixing test mixture
 Greater range of aerosol (i.e. fuel) loadings

 Recent work
 Fuel 1: N-Dodecane
 Fuel 2: Diesel (DF-2)
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Second-Generation Aerosol Shock Tube:
Experimental SchematicExperimental Schematic

(22 liters)

Dual extinction yields 
vapor concentration & 
temperature

 New aerosol loading scheme uses two large ST gate valves, 
mixing plenum and dump tank; plug flow loading  

p

 Laser diagnostics (UV to MIR) provide fuel loading, uniformity 
measure, and species concentration time-histories 
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Fuel: N-Dodecane
Ignition Delay Time Measurementsg y

C12H26/21% O2/Ar, =0.5, 5.5 atm 10
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 Quiescent shock tube behavior, similar to conventional gas-phase ST
 Low-scatter ignition delay time data
 Wide range of fuel loading ( = 0 3 to 1 5 in equivalent air) Wide range of fuel loading ( = 0.3 to 1.5 in equivalent air)
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Fuel: N-Dodecane
Comparison with JetSurF Modelp

 JetSurF model predictions are 
l i “ l ”
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 AST 2 can provide unique vapor-phase data for low-
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Fuel: Diesel (DF-2)
Ignition Delay Time MeasurementsIgnition Delay Time Measurements

 New diesel ignition data 
(domestic DF-2, C.I.=55) in 
excellent agreement with 
previous Stanford study

 Low scatter measurements 
allow better quantification of 
ignition time variation with fuel 

i ti ( itivariation (e.g. composition, 
Cetane Index)

Domestic DF-2
C.I. = 55

 Next Step: - acquire data over wider range of conditions (T,P, mixture, )
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 Next Step: acquire data over wider range of conditions (T,P, mixture, )
- investigate jet fuel surrogates (including bio-derived fuels) 



Fuel: Diesel (DF-2)
First AST 2 Application of Multi-Species Laser Absorption Strategypp p p gy

 Multi-species laser 
absorption measurements

Diesel Ignition

absorption measurements 
provide new chemical 
kinetic targets for diesel 
surrogate comparison

 Multi-Wavelength 
Diagnostics:
 650 nm: droplet 650 nm: droplet 

extinction
 3.39 m: fuel 

concentration
10 6 h lReflected Shock Conditions: 1092K, 7.6 atm,

f f

 10.6 m: ethylene Reflected Shock Conditions: 1092K, 7.6 atm,
0.19% Diesel (DF-2), 21% O2

 Multi-species data provides time histories for fuel 
decomposition and stable intermediates (C2H4)
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Topic 2: Cyclic Jet Fuel Surrogate ComponentsTopic 2: Cyclic Jet Fuel Surrogate Components

 High-quality ignition and species data needed for 
primary surrogate jet fuel components:
 paraffins (n-dodecane)
 cyclo-paraffins (methylcyclohexane/MCH) cyclo paraffins (methylcyclohexane/MCH)
 aromatics (toluene)

 Critical need for low-intermediate T data
 Current targets:

MCH: 60 atm 700 1100 K
Aromatics

Paraffins MCH: 60 atm, 700-1100 K
 Toluene: need to resolve ST/RCM

ignition time differences near 1000K

Paraffins

Cyclo-paraffins
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Ignition Measurements of Jet Fuel Surrogate 
Components: TolueneComponents: Toluene

 Development/refinement of surrogate jet fuel mechanisms 
i li bl i iti d t f t l t i l t

 Th P bl R ST d
1111K
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conditions

 The Problem: Recent ST and 
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intermediate temperatures
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New Shock Tube Ignition Delay Time
Measurements: TolueneMeasurements: Toluene

 To address this discrepancy we have measured ignition delay times 
for toluene/air mixtures = 1 0 50 atm 966-1211 Kfor toluene/air mixtures  = 1.0, 50 atm, 966 1211 K

 New measurements in good 
agreement with the previous 1111K  1250K 1000Kg p
Stanford study (Davidson 2005)

 Some variation in pressure time-
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Toluene Ignition Delay Time Measurements:
Comparison with ModelsComparison with Models

 General agreement with Andrae et al. (2008) model 
 Shorter experimental times than predicted by Sivaramakrishnan (2005) but Shorter experimental times than predicted by Sivaramakrishnan (2005), but

mechanism employs older rates for key reactions  Stanford Modified Model

 Stanford Modified Model
uses updated rates for:uses updated rates for:

H+O2=O+OH (GRI)
Tol+H=C6H5CH3                    (Baulch)
Tol+H=C6H5CH2+H2           (Stanford)
T l H C H CH (B l h)
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Ignition Measurements of Jet Fuel Surrogate 
Components: Methylcyclohexane (MCH)Components: Methylcyclohexane (MCH)

 Cyclo-alkane (naphthenes) are important chemical class present 
in jet fuel; ignition time and species data needed for this

 Current study provides extended 
769K1000K 625K1667K

in jet fuel; ignition time and species data needed for this 
component

y p
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Cyclic Jet Fuel Surrogates Components: SummaryCyclic Jet Fuel Surrogates Components: Summary

 High-quality ignition and some species time-history 
data now available for surrogate jet fuel components:
 paraffins (n-dodecane)
 cyclo-paraffins (methylcyclohexane/MCH) cyclo paraffins (methylcyclohexane/MCH)
 aromatics (toluene)

 Next Steps:
 Low-T data needed for toluene
 Additional species time-history

Aromatics
Paraffins Additional species time history

data needed for all components
(especially at low T)

Paraffins

Cyclo-paraffins
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Topic 3: Extension of Conventional Shock Tube Capabilities

 Opportunities/Needs to extend/improve shock tube pp p
operating regime

 St f d t t Stanford strategy:
A. Extend test time using tailored gases and longer driver
B. Use driver inserts to correct for dP/dt during RS experimentsB. Use driver inserts to correct for dP/dt during RS experiments
C. Measure T directly using WMS CO2 laser absorption 
D. Use CHEMSHOCK gasdynamic model to correct for changing test 

conditionsconditions
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Strategy A: Use Driver Extension & Tailored Mixtures
to Extend Test Time

Motivation Facility Test Time

 Critical need to overlap ST and 
RCM test times to resolve ign
modeling differences

H hi d 40 !
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Strategy B: Use Driver Inserts to Improve Uniformity of 
Reflected Shock Test ConditionsReflected Shock Test Conditions
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Strategy C: Confirm Uniformity using
New High-Sensitivity T Diagnosticg y g

Detail of T-HistoryReflected Shock T, P Histories
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 Direct measurement of T using wavelength modulation spectroscopy (WMS) of 
CO2 at 2.7m provides validation of highly uniform temperature over long test 
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(T-diagnostic developed under AFOSR support)
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Strategy D: Application of new reacting flow model:
CHEMSHOCKCHEMSHOCK

 Testing/validation of new high-fidelity reaction mechanisms with 
shock tube data demands both high-quality data and moreshock tube data demands both high quality data and more 
accurate shock tube reactive gasdynamic models

 Improved model CHEMSHOCK Improved model, CHEMSHOCK
 Uses CHEMKIN plus measured pressure instead of using traditional 

assumption of constant U,V

 Enable simulation of the temporal evolution of T and species concentrations Enable simulation of the temporal evolution of T and species concentrations 
behind reflected shock waves with chemical reaction and energy release

 Demonstrated successfully with low T ignition of hydrogen and propane

 Work in progress to extend CHEMSHOCK to allow simulation of the 
temporal and spatial variation of non-uniform (1-D) reflected-shock 
flowfields, including facility effects, as well as, chemical energy release 
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Topic 4: Resolution of Low-T Propane
Ignition Delay Time Discrepancyg y p y

 Low T propane ignition 
i d f ST d RCM
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Use of Driver Inserts to Maintain Uniform P and T 
during Reflected Shock Wave Experiments: 6 atm
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Propane Ignition: Low P Comparison with Model
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 Experiments performed with and without driver inserts
 Without driver insert  dP/dt = 1-2%/ms  (requires CHEMSHOCK model)
 With driver inserts  dP/dt = ~0%/ms  (can use traditional constant U,V model)

 Primary conclusion: Same mechanism (Curran et al 2008) successfully Primary conclusion: Same mechanism (Curran et al. 2008) successfully 
simulates all low P data!  No discrepancy between detailed propane mechanisms 
and low T  ST data.
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Future Worku u o

 Ignition chemistry at low temperatures (NTC):
Species time-histories and ignition delay times
 Fuels: Toluene, n-Dodecane

 Species Monitored: OH, C2H4, H2O, CO2, fuel, benzyl

 Application of AST 2:
Practical, Synthetic and Bio-derived Jet Fuels

Fuels: S 8 Large (bio oil derived) Methyl Esters Fuels: S-8, Large (bio-oil derived) Methyl Esters
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