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Outline of TopicsOu o op s

1. Development of second-generation aerosol shock tube p g
and its application to n-dodecane and diesel ignition

2. Ignition measurements of cyclic jet fuel surrogate 
components: toluene and methylcyclohexane (MCH)components: toluene and methylcyclohexane (MCH)

3. Extension of the operating regime and capabilities of 
conventional shock tubes

4. Successful resolution of apparent discrepancy in low-T 
propane ignition delay times 
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Topic 1: Development of Second-Generation
Aerosol Shock Tube (AST 2)

 First-generation aerosol shock tube (AST 1)

Aerosol Shock Tube (AST 2)

 Turbulence-based filling method – some limitations on fuel loading range, 
uniformity and reproducibility

 Second-generation aerosol shock tube (AST 2)Second generation aerosol shock tube (AST 2)
 New plug-flow-based aerosol delivery system allows partial ST filling
 Improved spatial uniformity of the aerosol by pre-mixing test mixture
 Greater range of aerosol (i.e. fuel) loadings

 Recent work
 Fuel 1: N-Dodecane
 Fuel 2: Diesel (DF-2)
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Second-Generation Aerosol Shock Tube:
Experimental SchematicExperimental Schematic

(22 liters)

Dual extinction yields 
vapor concentration & 
temperature

 New aerosol loading scheme uses two large ST gate valves, 
mixing plenum and dump tank; plug flow loading  

p

 Laser diagnostics (UV to MIR) provide fuel loading, uniformity 
measure, and species concentration time-histories 
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Fuel: N-Dodecane
Ignition Delay Time Measurementsg y

C12H26/21% O2/Ar, =0.5, 5.5 atm 10
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 Quiescent shock tube behavior, similar to conventional gas-phase ST
 Low-scatter ignition delay time data
 Wide range of fuel loading ( = 0 3 to 1 5 in equivalent air) Wide range of fuel loading ( = 0.3 to 1.5 in equivalent air)
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Fuel: N-Dodecane
Comparison with JetSurF Modelp

 JetSurF model predictions are 
l i “ l ”
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 AST 2 can provide unique vapor-phase data for low-
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Fuel: Diesel (DF-2)
Ignition Delay Time MeasurementsIgnition Delay Time Measurements

 New diesel ignition data 
(domestic DF-2, C.I.=55) in 
excellent agreement with 
previous Stanford study

 Low scatter measurements 
allow better quantification of 
ignition time variation with fuel 

i ti ( itivariation (e.g. composition, 
Cetane Index)

Domestic DF-2
C.I. = 55

 Next Step: - acquire data over wider range of conditions (T,P, mixture, )
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 Next Step: acquire data over wider range of conditions (T,P, mixture, )
- investigate jet fuel surrogates (including bio-derived fuels) 



Fuel: Diesel (DF-2)
First AST 2 Application of Multi-Species Laser Absorption Strategypp p p gy

 Multi-species laser 
absorption measurements

Diesel Ignition

absorption measurements 
provide new chemical 
kinetic targets for diesel 
surrogate comparison

 Multi-Wavelength 
Diagnostics:
 650 nm: droplet 650 nm: droplet 

extinction
 3.39 m: fuel 

concentration
10 6 h lReflected Shock Conditions: 1092K, 7.6 atm,

f f

 10.6 m: ethylene Reflected Shock Conditions: 1092K, 7.6 atm,
0.19% Diesel (DF-2), 21% O2

 Multi-species data provides time histories for fuel 
decomposition and stable intermediates (C2H4)
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Topic 2: Cyclic Jet Fuel Surrogate ComponentsTopic 2: Cyclic Jet Fuel Surrogate Components

 High-quality ignition and species data needed for 
primary surrogate jet fuel components:
 paraffins (n-dodecane)
 cyclo-paraffins (methylcyclohexane/MCH) cyclo paraffins (methylcyclohexane/MCH)
 aromatics (toluene)

 Critical need for low-intermediate T data
 Current targets:

MCH: 60 atm 700 1100 K
Aromatics

Paraffins MCH: 60 atm, 700-1100 K
 Toluene: need to resolve ST/RCM

ignition time differences near 1000K

Paraffins

Cyclo-paraffins
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Ignition Measurements of Jet Fuel Surrogate 
Components: TolueneComponents: Toluene

 Development/refinement of surrogate jet fuel mechanisms 
i li bl i iti d t f t l t i l t

 Th P bl R ST d
1111K
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requires reliable ignition data for toluene at engine-relevant 
conditions

 The Problem: Recent ST and 
RCM studies of toluene ignition 
show differing trends at 
intermediate temperatures

10000

 [
s]

Mittal & Sung (RCM)
EA= 28.4 kcal/moleToluene/Air

50 atm
intermediate temperatures 
(900-1200 K) and high 
pressures (near 50 atm)

1000

Davidson et al.
EA= 9.6 kcal/moleD

el
ay

 T
im

e  = 1

 The Need: Establish reliable 
data base for ign, especially at 
T< 1050K

100
(Shock Tube) SU

Shen et al.  (Shock Tube) RPI
EA= 13.6 kcal/mole

Ig
ni

tio
n 

D

11

0.75 0.80 0.85 0.90 0.95 1.00 1.05
A

1000/T, [1/K]



New Shock Tube Ignition Delay Time
Measurements: TolueneMeasurements: Toluene

 To address this discrepancy we have measured ignition delay times 
for toluene/air mixtures = 1 0 50 atm 966-1211 Kfor toluene/air mixtures  = 1.0, 50 atm, 966 1211 K

 New measurements in good 
agreement with the previous 1111K  1250K 1000Kg p
Stanford study (Davidson 2005)

 Some variation in pressure time-
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Toluene Ignition Delay Time Measurements:
Comparison with ModelsComparison with Models

 General agreement with Andrae et al. (2008) model 
 Shorter experimental times than predicted by Sivaramakrishnan (2005) but Shorter experimental times than predicted by Sivaramakrishnan (2005), but

mechanism employs older rates for key reactions  Stanford Modified Model

 Stanford Modified Model
uses updated rates for:uses updated rates for:

H+O2=O+OH (GRI)
Tol+H=C6H5CH3                    (Baulch)
Tol+H=C6H5CH2+H2           (Stanford)
T l H C H CH (B l h)
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Ignition Measurements of Jet Fuel Surrogate 
Components: Methylcyclohexane (MCH)Components: Methylcyclohexane (MCH)

 Cyclo-alkane (naphthenes) are important chemical class present 
in jet fuel; ignition time and species data needed for this

 Current study provides extended 
769K1000K 625K1667K

in jet fuel; ignition time and species data needed for this 
component

y p
temperature and pressure range 
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Cyclic Jet Fuel Surrogates Components: SummaryCyclic Jet Fuel Surrogates Components: Summary

 High-quality ignition and some species time-history 
data now available for surrogate jet fuel components:
 paraffins (n-dodecane)
 cyclo-paraffins (methylcyclohexane/MCH) cyclo paraffins (methylcyclohexane/MCH)
 aromatics (toluene)

 Next Steps:
 Low-T data needed for toluene
 Additional species time-history

Aromatics
Paraffins Additional species time history

data needed for all components
(especially at low T)

Paraffins

Cyclo-paraffins
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Topic 3: Extension of Conventional Shock Tube Capabilities

 Opportunities/Needs to extend/improve shock tube pp p
operating regime

 St f d t t Stanford strategy:
A. Extend test time using tailored gases and longer driver
B. Use driver inserts to correct for dP/dt during RS experimentsB. Use driver inserts to correct for dP/dt during RS experiments
C. Measure T directly using WMS CO2 laser absorption 
D. Use CHEMSHOCK gasdynamic model to correct for changing test 

conditionsconditions
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Strategy A: Use Driver Extension & Tailored Mixtures
to Extend Test Time

Motivation Facility Test Time

 Critical need to overlap ST and 
RCM test times to resolve ign
modeling differences

H hi d 40 !
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Strategy B: Use Driver Inserts to Improve Uniformity of 
Reflected Shock Test ConditionsReflected Shock Test Conditions
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Strategy C: Confirm Uniformity using
New High-Sensitivity T Diagnosticg y g

Detail of T-HistoryReflected Shock T, P Histories
( t il i +i t h t d i )
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 Direct measurement of T using wavelength modulation spectroscopy (WMS) of 
CO2 at 2.7m provides validation of highly uniform temperature over long test 
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(T-diagnostic developed under AFOSR support)
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Strategy D: Application of new reacting flow model:
CHEMSHOCKCHEMSHOCK

 Testing/validation of new high-fidelity reaction mechanisms with 
shock tube data demands both high-quality data and moreshock tube data demands both high quality data and more 
accurate shock tube reactive gasdynamic models

 Improved model CHEMSHOCK Improved model, CHEMSHOCK
 Uses CHEMKIN plus measured pressure instead of using traditional 

assumption of constant U,V

 Enable simulation of the temporal evolution of T and species concentrations Enable simulation of the temporal evolution of T and species concentrations 
behind reflected shock waves with chemical reaction and energy release

 Demonstrated successfully with low T ignition of hydrogen and propane

 Work in progress to extend CHEMSHOCK to allow simulation of the 
temporal and spatial variation of non-uniform (1-D) reflected-shock 
flowfields, including facility effects, as well as, chemical energy release 
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Topic 4: Resolution of Low-T Propane
Ignition Delay Time Discrepancyg y p y

 Low T propane ignition 
i d f ST d RCM
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Use of Driver Inserts to Maintain Uniform P and T 
during Reflected Shock Wave Experiments: 6 atm
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 Experiments performed with and without driver inserts
 Without driver insert  dP/dt = 1-2%/ms  (requires CHEMSHOCK model)
 With driver inserts  dP/dt = ~0%/ms  (can use traditional constant U,V model)

 Primary conclusion: Same mechanism (Curran et al 2008) successfully Primary conclusion: Same mechanism (Curran et al. 2008) successfully 
simulates all low P data!  No discrepancy between detailed propane mechanisms 
and low T  ST data.
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Future Worku u o

 Ignition chemistry at low temperatures (NTC):
Species time-histories and ignition delay times
 Fuels: Toluene, n-Dodecane

 Species Monitored: OH, C2H4, H2O, CO2, fuel, benzyl

 Application of AST 2:
Practical, Synthetic and Bio-derived Jet Fuels

Fuels: S 8 Large (bio oil derived) Methyl Esters Fuels: S-8, Large (bio-oil derived) Methyl Esters
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