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Motivation: Improving High Temperature
Thermal Stability of RP fuelsy

 Future jet/rocket engine designs will likely 
i l hi h f l t t hinvolve higher fuel temperatures, however 
this may promote fuel decomposition and 
coking in fuel lines

 To reduce fuel decomposition (and coking) 
improved understanding of the kinetics of jet 
fuels (and surrogates) are needed RP-1
 RP fuels: RP-1/-2 (narrow distillation cut fuels)
 n-dodecane (single component RP-1 surrogate)
 Methylcyclohexane (2nd RP surrogate component) C12H26

 Do existing thermal stability additives   (i.e. 
hydrogen donors such as THQ) work at 
higher temperatures (i e above 800 K)?higher temperatures (i.e. above 800 K)?

1,2,3,4-Tetrahydroquinoline

2
THQ
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Overview: Coke formation processes and
fuel decompositionfuel decomposition

 Different coke formation mechanisms at different T

 Oxidation (T < 600 K) Oxidation (T < 600 K)
 Fuel reaction with trace impurities

 Catalytic or Filament (650 K < T < 1750 K)
 Fuel reaction with heat exchanger walls Fuel reaction with heat exchanger walls
 Filamental carbon deposits on walls

 Condensation or Dehydrogenation (T > 850 K)
 Fuel decomposition Fuel decomposition
 Amorphous particles formation in the flow
 Similar to sooting, formation of PAHs

 This study addresses first step of high temperature 
coke formation: fuel decomposition and role of 
additives to slow this process
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RP Fuels Stability Studies Strategy:
Measure decomposition rates with shock tubes/laser absorptionp / p

 Pyrolysis via Reflected Shock Wave Heating:
l ( h ) d l h k b conventional (gas phase) and aerosol shock tubes

 Laser Absorption Diagnostics:
 3.39 m mid-IR: Fuel concentration

10 57 m mid IR: ethylene alkenes 10.57 m mid-IR: ethylene, alkenes
 650 nm visible: droplet extinction

 Fuels & Additives:
 RP-1, RP-2, n-dodecane, MCH, THQRP 1, RP 2, n dodecane, MCH, THQ

(RP-1 Cetane No. = 38.6: high cyclo-alkane content)

 Experimental Conditions:
 1050-1300 K, 2-8 atm, 0.05-0.5% fuel/Argon

 Measurement Targets:
 Fuel half-lives
 Species concentration time-histories: fuel, C2H4
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Experimental Setup: Aerosol shock tube (AST) with 
laser diagnostics

 AST enables study of low-vapor-pressure fuels
 Load aerosols pre-shock

Full evaporation after incident shock Full evaporation after incident shock
 High T test conditions after reflected shock
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Example AST/Laser Absorption Experiment:
RP-1 Pyrolysisy y

 Three wavelengths
Excellent SNR
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 Complete evaporation of RP-1 droplets behind incident shock wave

Time [ms]

 Strong evidence of conversion of RP-1 fuel components to ethylene 
and higher alkenes
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Example Half-Life Measurements:
n-Dodecane Pyrolysisy y

 Strong temperature 
d d f l
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 Direct comparison of RP fuels and surrogate half-life measurements 
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possible with and without thermal stablility additives
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Comparison of Fuel Half-Life Measurements:
RP-1, RP-2 and n-Dodecane Pyrolysis, y y

 RP-1 and RP-2 have 
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 Measurements consistent with earlier
decomposition rate study (2008)
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 faster decomposition rate, shorter 
half-life



Thermal Stability Additives: 
Hydrogen donors - THQy g Q

 THQ: proposed hydrogen + R•  + R

•

Q p p y g
donor additive for high 
temperature fuel stabilization

+ R•   + R

1,2,3,4-Tetrahydroquinoline

 Fuel Stabilization Process: 
Simple H-abstraction from 
hydrogen donor (i.e. THQ) by Sequential hydrogen donation to alkyl hydrogen donor (i.e. THQ) by 
alkyl radicals (i.e. dodecyl 
C12H25•) should stabilize early 
fuel decomposition products

radicals by THQ (adapted from Yoon et al.)

fuel decomposition products 
and slow overall fuel 
decomposition rate

.
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Comparison of Fuel Half-Life Measurements:
Effect of Thermal Stability Additive THQy Q
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 Preliminary measurement show evidence of THQ slowing RP-1 decomposition
 Stabilizing effect not seen in n-dodecane (down to 1100 K)
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 Stabilizing effect not seen in n dodecane (down to 1100 K)
 Yoon et al. (1996) sees effect with dodecane/10%THQ  at 660-740K



RP Fuel Thermal Stability Studies: Statusy

 Pyrolysis half-life measurements provide 
simple test of fuel stability
 Good agreement between ethylene formation 

and fuel decomposition half livesand fuel decomposition half-lives

 Pyrolysis half-lives measured for:
RP 1 RP 2 n dodecane RP-1, RP-2, n-dodecane

 RP-1 and n-dodecane + THQ

 Further low temperature studies needed to Further low temperature studies needed to 
confirm effect of THQ addition
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Multi-Component RP-Fuel Surrogates and
Composition of Various Aviation Fuels

Higher fidelity simulation of kerosene-based fuels 
will require multi-component surrogatesq p g

JP-8
″ th ″ i

JP-7
″ th ″ i

RP-1
″ th ″ i

RP-2
″ h ″ i l• ″other″ is 

aromatics/olefins 
(18/2 vol%)
• 500 ppm
total sulfur

• ″other″ is 
aromatics
• 60 ppm total 
sulfur

• ″other″ is 
aromatics
• 30 ppm total
sulfur (max)

• ″other″ is mostly 
aromatics
• 0.1 ppm
total sulfur (max)
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Testing and Validation of 
RP-Fuel Surrogate Pyrolysis Mechanismsg y y

Problem:Problem:
 Intermediate temperature (600-1200K) pyrolysis mechanisms 

needed to describe first steps of RP fuel decomposition

Stanford Strategy:
 Multi-species testing of single component RP-fuel surrogate:Multi species testing of single component RP fuel surrogate: 

n-Dodecane
 Multi-species testing of possible second component of RP-fuel 

surrogate: Methylcyclohexanesu ogate et y cyc o e a e
 Test JetSurF 1.1: possible RP-fuel surrogate mechanism for 

pyrolysis
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Testing and Development of a Single Component 
Surrogate for RP Series Fuels: N-Dodecane:g

 N-Dodecane oxidation mechanisms are currently being validated
Thi k f l i h i t This work focuses on pyrolysis chemistry

 Multi-species laser absorption studies of n-dodecane pyrolysis :
3.39 m (dodecane), 10.57 m (ethylene)

 Dodecane (and ethylene) measurements provide test of overall 
fuel decomposition ratep

 Ethylene measurements provide test of fuel decomposition 
branching ratios
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N-Dodecane Pyrolysis:
Laser Absorption Time-Historiesp

 High SNR measurement
St i ti f
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 JetSurF 1 1 model may slightly overpredict n-dodecane removal rate
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 JetSurF 1.1 model may slightly overpredict n dodecane removal rate
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Ethylene Formation during N-Dodecane 
Pyrolysis: 10.57 m Laser Absorptiony y  p

 High signal/noise ratio 
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 Direct comparison with JetSurF model predictions provides
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 Direct comparison with JetSurF model predictions provides 
check on branching ratios of decomposition pathways
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Ethylene Formation during N-Dodecane 
Pyrolysis: Comparison with Modely y p

 Constant ethylene yield 
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 Current n dodecane decomposition rates and pathways (JetSurF) 
sufficiently accurate to predict major product (C2H4) formation rates
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N-Dodecane Decomposition Channelsp

 JetSurF mechanism 
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Next Steps: 1) investigate higher alkane/alkene product yields in C12H26
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2) Extend investigations to multi-component surrogates
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Conclusions and Future Work

 Thermal Stability Studiesy
 Measurements of RP-1/RP-2 decomposition in AST
 Possible evidence of RP-1 thermal stabilization by THQ  at high T
 Kinetic model needed for THQ chemistry Kinetic model needed for THQ chemistry

 RP fuel surrogate pyrolysis mechanism development
M lti i t di f d d l i Multi-species studies of n-dodecane pyrolysis

 Initial multi-species studies of MCH pyrolysis
 Development/refinement of RP-fuel surrogate mechanism
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