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Motivation and Background

Simulations require diffusivities in a variety of situations:

Laminar diffusion flames:  - preferential species diffusion affects flame structure & attributes

Laminar premixed H2 -air flames: computed flame speed as sensitive to diffusion as kinetics 
of the primary chain branching reaction

Turbulent flames: small scale structures are affected by diffusion.

Premixed alcohol, n-heptane, and iso-octane/air flames: sensitivity of flame speeds and 
extinction strain rates to diffusion can be of the same order as to the kinetics.

Takagi; Xu; Komiyama, Comb. & Flame, 1996, 106, 252.
Takagi; Xu, Comb. & Flame, 1994. 96, 50.

Harstad, Bellan, Ind. & Eng. Chem.Res., 2004. 43, 645.
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Okong'o; Bellan, J. Fluid Mech., 2002. 464, 1.

Holley, Dong; Andac; Egolfopoulos, Comb. & Flame, 
2006. 144, 448.

Wang, Chem. Phys. Let., 2000. 325, 661.



Topics

Brief overview of measurement methods

Description of present method

Initial Results – selected C1 to C8 alkanes

Closer look at uncertainties

• Analytical assumptions; temperature; substrate sticking, substrate 

decomposition

• Noble gas validation studies

Conclusions and Coming Attractions



Diffusion Measurement Methods - Historical

Watch concentration 
change as f(time)

Watch width increase as slowly flows 
through (very) long tube

Injection
Flow

1.  Closed tube

3. Gas Chromatography
- Peak Broadening

2.  Two-bulb



Diffusion Measurement -
 

GC Method II

Monitor concentration – time profile at exit of static diffusion column

Katsanos and Karaiskakis (1982). 
J. of Chromatography 237(1): 1-14.
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Baseline drift causes systematic errors          Flow Reversal Methods

Separates diffusive and analytical fluxes; no valves at high T



Double Flow Reversal Procedure
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Apparatus
Some Details:
1. Valve operation, oven T controlled by GC and automated
2. Diffusion columns 61 cm or 23 cm 4.6 mm I.D. electropolished 316 SS
3. Starting hydrocarbon concentrations (2 to 4)%
4. Experimental pressures ca. 1.9 atm.
5. ca. 0.2 ml injection volumes
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Mathematical Analysis - I

1. Relate concentration-time profile of substrate along diffusion tube to 
diffusion coefficient (Fick’s second law)

2. Relate detector signal to concentration-time profile of substrate at exit of 
diffusion tube

3. Describe effects of flow reversals
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Mathematical Analysis - II
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t = time measured from injection of the substrate 
z = distance coordinate along diffusion tube
c = concentration of the substrate A
DAB = binary diffusion coefficient

Fick’s Second Law

h = peak height 
N = constant
L = length of diffusion tube
τ

 

= relates peak elution time to the time the 
substrate exits diffusion tube

t0 = peak elution time measured from injection of 
substrate

tM = gas hold-up time
tFR = duration of flow reversal

Assumptions:
1. Only gas phase diffusive flow (no convection, thermal gradients, wall interactions)
2. Initial mass distribution of substrate is a delta function
3. No diffusion in sampling column
4. High flow rates, reasonable sampling times

Katsanos and Karaiskakis (1982). 
J. of Chromatography 237(1): 1-14.
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Example Data Plot
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Figure 2.  Plot of equation for an experiment with C2 H6 – N2 at 350 K.  
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Katsanos and Karaiskakis (1982). 
J. of Chromatography 237(1): 1-14.



Laplace Transform Analysis is Not Valid at 
Long Times

Dilute CH4 in He ar 599.9 K
D (1.013 bar) = (2.146 ±

 

0.011) cm2 s–1



Initial Results

Selected Hydrocarbons: C1 to C8 Alkanes



CH4
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This work: DCH4-N2 = 1.358 x10-5 T1.708



CH4
 

-He
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Propane-N2
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This work: DC3H8-He(250-725 K) = 5.359x10-5 T1.759

At 1000 K, our D is about 30% larger than Wakeham/Slater value  



Pentane-He
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This work: Dn-Pentane-He(300-600 K) = 3.309x10-5 T1.598

At 1000 K, our D is about 50% smaller than the Hargrove/Sawyer value



Hexane-He
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This work: Dn-Hexane-He(350-600 K) = 3.212x10-5 T1.584

At 1000 K our D is about 40% smaller than the Hargrove/Sawyer value

Peak shape in chromatogram becomes broader and non-Gaussian at 300 K 
- indicates sticking to walls.



n-Octane-He
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Temperature Variation of DAB

Data suggest n(N2) > n(He)

Binary System 
A–B

T(K) Equation                
D AB/(cm2s−1) = BT n

n Reference

CH4–N2 298-382 1.183x10-5 T1.722 1.722 1964Mueller
314-671 1.054 x10-5 T1.753 1.753 1973 Wakeham
250-700 1.358 x10-5 T1.708 1.708 This work

C3H8–N2 317-671 9.907 x10-6 T1.642 1.642 1973 Wakeham
250-725 5.359 x10-6 T1.759 1.759 This work

CH4–He 303-764 5.923 x10-5 T1.643 1.643 1973 Frost
300-700 5.250 x10-5 T1.659 1.659 This work

Ethane–He 303-764 4.566 x10-5 T1.633 1.633 1973 Frost
297-447 5.459 x10-5 T1.599 1.599 1983 Katsanos
300-700 4.572 x10-5 T1.632 1.632 This work

n -pentane– He 298-473 4.888 x10-5 T1.925 1.925 1967 Hargrove
300-600 3.309 x10-5 T1.598 1.598 This work

n -hexane– He 298-473 8.440 x10-6 T1.820 1.820 1967 Hargrove
350-600 3.212 x10-5 T1.584 1.584 This work

n -octane– He 450-700 2.350 x10-5 T1.603 1.603 This work



Part 2 –
 

How good is our measurement?

Measurements show excellent precision, ca. +/- (0.5 – 1)%

Absolute accuracy difficult to test with hydrocarbons because 
of lack of reference data

Noble gas diffusion much better studied – makes a better test

Need to better define uncertainties:

Analytical procedure

Temperatures, pressures, tube length etc.



Laplace Transform Analysis –
 

when is it valid?

Dilute CH4 in He ar 599.9 K
D (1.013 bar) = (2.146 ±

 

0.011) cm2 s–1
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Simulation Results

Dilute CH4 in He ar 599.9 K
D (1.013 bar) = (2.146 ±

 

0.011) cm2 s–1



Uncertainty Analysis
 Temperature –

 

Long Tube (Bent)

2σ

 

uncertainty assumed to be 
maximum deviation in T during run. 

Assumed for uncertainty:  7.1TD ∝

Nominal T (°C) ΔT/T

27 0.310 %

77 0.132 %

127 0.218 %

177 0.333 %

227 0.447 %

277 0.604 %

327 0.827 %

377 1.079 %

427 1.620 %

450 1.721 %

PRT Meas.

T
e
m
p

Temp



Uncertainty Analysis
 Length of Diffusion Tube

L(straight tube) =(60.79 ±

 

0.01) cm

L(bent tube) = 61.5  cm 
at calculated midpoint 
(assuming …) Up to 0.23 cm

in ΔL

Calibration using Reference Data:

DHe-Ar = (0.7344 ±

 

0.0042) cm2 s–1 at 
1.013 bar and 300 K (2σ

 

uncertainty)
W.A. Wakeham, A. Nagashima, J.V. Sengers, Experimental 
Thermodynamics, Vol. III: Measurement of the Transport 
Properties of Fluids. Blackwell Scientific: Oxford, 1991; p 459.

Effective length 
based on Ref. Data:

L=(61.28±0.01) cm



Argon in Helium

2σ

 
uncertainty

]s[cm )K 1/(10)24.034.5()( 12007.0674.15
12

−±−×±= TTD



Helium in Argon

2σ

 
uncertainty

]s[cm )K 1/(10)19.056.5()( 12006.0664.15
12

−±−×±= TTD



DHe-Ar
 

Concentration Dependence



Methane in He

2σ

 
uncertainty

]s[cm )K 1/(10)18.097.4()( 12006.0668.15
12

−±−×±= TTD



Longer-Chain Hydrocarbons in Improved 
Validated Apparatus

6836.1510342.3 T−×

6570.1510159.3 T−×

6540.1510733.2 T−×

D, cm2 s–1

T, K



Remaining Experimental Issues

Sticking – significant with stainless tubes/low Vp hydrocarbons

Hexane sticks at T ≤ 300 K; octane at T ≤ 400 K

Restek “Silcosteel” coated tube – increased sticking slightly

Other coatings, tube materials??

Substrate decomposition:

Pentane (stainless tube): <1% decomposition at 725 K in ca. 20 minutes

Longer aliphatics, alkenes, etc. untested

Transfer standard for long/short tubes (large/small D)



Concluding Remarks

Demonstrated new apparatus to measure binary diffusion 
coefficients over a wide T range  (ca. 250-725 K)

Measurements show excellent precision (ca. +/- 0.5-1%)

Absolute accuracy within 2% in absence of systematic errors 
(sticking, substrate decomposition) – should be good enough 
to allow extrapolation over temperature and theory/correlation 
development

Data suggest T dependence of DA-Helium < DA-Nitrogen



Future Directions

Extend studies to larger n-alkanes, C12+ 

Relate results to theory (with Hai Wang & Angela Violi)

Examine isomeric species (effect of geometry)

Examine other bath gases

Examine other homologous series of interest to modeling 
combustion of liquid fuels and their surrogates

– Alkenes
– Aromatics
– Alkynes
– Oxygenated species
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