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PIOJECT ©ORJECTIVES

e Obtain fundamental data on combustion
behavior of alternative jet fuels
— Fischer-Tropsch and Bio-derived
— Real fuels and associated model (surrogate) fuels

e Assemble fuel-chemistry models for simulation

— Validate kinetics through comparison with experiment
— Recommend surrogate blends
— Provide accurate, reduced mechanisms

e |dentify differentiating characteristics of
molecular fuel components



[asksS Undertakenitermeet: G ECLIVES

e Fuels survey and analysis

— F-T fuels

— Bio-derived fuels
e Flame experiments for liquid / heavy fuels

— Laminar flame-speed and flame-extinction limits

— Augmentation of diagnostics to measure NO, and soot
e Surrogate-model assembly and testing

— Build from state-of-the-art detailed mechanisms

— Refine NO, sub-model

— Flame modeling, including NO, and soot formation

e Mechanism reduction for targeted conditions
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Ultimately, we want fuel-combustion

mechanisms suitable for CEFD simulation

1. Identify appropriate surrogate components
for targeted alternative jet fuels

2. Assemble & test component mechanisms
against available experimental data

3. Determine appropriate component-blending
method to match real-fuel properties

4. Test surrogate blend against real fuel
behavior

5. Reduce surrogate mechanism for targeted
conditions
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FUE]GatenWas) CollECTEU eI A ETERMINE
apprepriate el sturregates

e 2 F-T samples obtained from the Air Force
— Courtesy of Tim Edwards, AFRL
— GC/MS data provides class/size composition of fuels
— Cetane number (IQT data) and distillation points
e Bio-derived jet fuel (R-8) also acquired from AF

— Same general characteristics as F-T samples
— Detailed chemical analysis not available
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[Sealkanes Withivery ittt e branching

e Summary results for S-8 (Syntroleum) sample: (based
on GCMS analysis courtesy of Tim Edwards of AFRL)

F-T fuel (S-8) analysis, mol% 25
Carbon number distribution in F-T fuel (S-8)
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e Most of the iso-paraffins consist of only one methyl
branch on a long and straight alkane chain
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F-T fuel from different sources are similar,

but have different C# distribution

5172 F-T Kerosene
C Shell GTL Cetane ASTM
Ce M Numbers D976
L JLM*U MM)LMM” Shell GTL 68
Cia Syntroleum
Gt e 4909 S-8 S8 57
L ﬂ ,ul B B Cig Cig

e Highlights about composition
— Mostly 1 or 2 methyl side chain alkanes
* Side chains responsible for lower cetane numbers of large alkanes
— C# varies significantly
* C,-C,, for S-8 with C4—C, 5 consist majority of composition
* C4-C,, for Shell
— Cetane number is ~60 USC




Reaction Design has developed a Surrogate

Blend Optimizer to match fuel properties

Set Target Characteristics

Class composition Fuel properties
Heating value to match

Octane / Cetane #
H/C ratio, O content
Other physical properties
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\We determined surrogate blends based on

properties that are important for simulation

e |so-octane included to match Cetane Number
— Although highly branched, captures effect of low-branch components
— We had a well validated mechanism consistent with other mechanisms

iso-Octane (mol %)

n-Decane (mol %) 61

n-Dodecane (mol %)

Cetane Number 61 61 61 60
H/C molar ratio 2.21 2.17 2.20 2.17
Lower Heating Value 45 44 44 44
(MJ/kQ)

T50 boiling point (K) 404 445 447 474




IThe E-1F surrogate: mechanism was

assembled based on previous work

mechanism of n-alkanes
* Removed species > C12

* Removed low-temperature kinetics to focus
on flames

* Added estimates of transport parameters

e |[SO-0ctane mechanism merged In

— From Curran et al. (2002)
* high-temperature reactions only

e Enforced self-consistent rate rules
and thermodynamics

— SMILES strings identified for all species

e N-decane and n-dodecane
— From Westbrook et al. (2008)




IMPreVEMERTSWEREMadErerad U eSS OVEr:

prediction el laminarfiame-speeds

e Sensitivity analysis pointed to C,-C; chemistry
as sources of systematic error

e Changes made to C,-C; core chemistry:

— H,, oxidation
* Updated based on recent studies by Curran et al. (2004) and Dryer et al.
(2007)

* Updated {w]H?%8X for OH and HO,
* Significant effect on flame speeds
— C, oxidation
* Updated based on Petersen et al. (2007)
— C, and C,; oxidation
* Updated based on Naik and Dean (2006)
* All reverse rate constants based on microscopic reversibility
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cludingiew="andimid-temperattre pathways

e Based on recent mechanisms reported in literature

— GRI 3.0 NO, sub-mechanism — High-T
— Dagaut, Glarborg, et al. 2008 mechanism — Mid-T

* Complete and up-to-date HCN chemistry, as well as N,O and NNH
chemistry

— Rasmussen, Glarborg, et al. 2008 mechanism — Low-T
* NO,-HC interactions

Rasmussen, Glarborg, et al. 2008 Low-T
Dagaut, Glarborg et al. 2008 Mid-T
NOx sub-model from GRI-mech 3.0 High-T

e Final NO, sub-model includes fuel-NO, sensitization and
self-consistent set of thermodynamic properties



DetalledimechaniSmsiwWerersysstematically,

reducediternighEteEmMpPERatUuRE VERSIONS

e High-temperature mechanisms extracted
based on chemistry logic

— Remove species deemed to be only important for low-
temperature chain-branching
* Ketohydroperoxides and QOOH species

— Remove reactions associated with removed species
e Method based on unique species identifiers

— SMILES strings tag each species in system

— Independent of any species naming convention

— Allows full automation for mechanism operations

e Resulting mechanism:
— 681 species, 3934 reactions
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Improved mechanism provides reliable

flame-speed predictions for n-alkanes

e Tested with smaller alkane data from the literature first
e Compares well with USC JetSurf mechanism
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Extensive study at USC resulted in high-

quality, reproducible data for liquid fuels

Ulnburned Gas Temperature VS. Strain Rates

e Effect of flow rate (strain rate)
on unburned gas temperature
— Temperature correction required

e Effect of radial location of
measurement for velocities

— Consistent placement very close to
centerline required for reproducibility

Unburned Gas Temperature, C
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A wide range of data was collected at USC

for fuel comparison and model validation

e Laminar flame speeds

e Laminar flame extinction strain rates

e NO, Iin premixed flames

e Ignition temperature for premixed flames

e Data was collected for real jet fuels and
surrogate components




Results show strong similarity between fuels

for flame propagation and extinction
e JP-7, S-8, R-8 and n-dodecane give same flame speeds
— JP-8 is slightly lower

e JP-7, S-8, R-8 show the same extinction strain rates
— n-dodecane is slightly higher
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We performed a large number of simulations

to validate our chemistry model

e Laminar flame-speeds for three surrogate components:
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We compared the model to literature data, as

well as to USC flame data

Ignition time (sec)

e Ignition-delay time and species profiles in flames

for surrogate-fuel components
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We also looked at very recent ignition

temperature measurements

e Data from Bieleveld et al. 2009
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Comparisons of the surrogate model with

F-T fuel data show good agreement
e Flame-speed, flame-extinction, and species data for

F-T fuel sample, S-8
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The NO, sub-mechanism has also been

tested against USC flame data

NOXx concentration (ppm)

e Agreement not as good for larger
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Uncertainty and reaction path analysis

suggest discrepancy may be due to data

e Reaction path analysis show same dominant
reactions under both conditions

e Uncertainty analysis suggests small perturbations in

velocity or temperature measurements could account
for difference
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TWo automated mechanism-reduction

methods in CHEMKIN have been tested

e Directed Relation Graph (DRG) method
— Produces skeletal mechanism
— Maintains original rates and species identity

e Computational Singular Perturbation (CSP) method
— More severe reduction, based on quasi-steady assumptions

— Global, lumped reactions solved for active species
— Algebraic set of equations solved for non-active species
— Requires skeletalization (DRG) as preliminary step in reduction

e Both methods are fully integrated into a (pre-release)
version of CHEMKIN-PRO



Results show that accuracy can be
maintained with about 85% reduction

Reduced mech 1 174 148
Reduced mech 2 95 95 (no CSP applied)
Reduced mech 3 64 56
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Conclusions (1 of 2)

e Comparing F-T fuels to bio-derived jet fuels, we find no
difference in behavior

e Despite differences in the C# distribution for two F-T
fuels, the flame speed & extinction were the same
— Long-chain normal alkanes > C6 have similar flame behavior
— Still may be important to distinguish for NO, emissions

e Comparing F-T fuels with JP-7 and JP-8, we found that
the F-T fuels have same laminar flame-speed as JP-7

e n-dodecane also shows similar flame behavior as F-T

— This is a reasonable 1-component surrogate for flame-speed and
extinction behavior only

— Need more complex surrogate for other fuel properties and emissions



Conclusions (2 of 2)

e Our chemistry model underwent much improvement
during the course of the project

— Flame-speed, flame-extinction, ignition and NO, predictions are
within experimental uncertainty

e A 3-component fuel surrogate for the F-T and bio-
derived jet fuels matches data well
— n-dodecane, n-decane, iso-octane

e Automated mechanism reduction provides a practical
model for use with CFD

e The chemistry models are available and will be
published with NASA’s approval

e A new CHEMKIN-based extinction model is currently
In beta testing



