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Laminar Burning Velocity

* Important parameter in the
characterization of premixed

combustion processes

e Appears in turbulent
combustion models

* Accurate measurement of the
burning velocity not easy
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Burning Velocity Measurement

* Premixed counter-flow twin-flame
arrangementt

* Burning velocity is measured at different strain
rates

* Unstretched burning velocity obtained using
non-linear extrapolation to zero stretch

* Extrapolation based on similarity assumptions
about the pressure field

1: C. Ji, E. Dames, Y.L. Wang, H. Wang, F.N. Egolfopoulos, “Propagation and
Extinction of Premixed C5-C12 n-Alkane Flames,” Combustion and Flame, doi:
10.1016/j.combustflame.2009.06.011, 2009
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Objective

e Verify if the extrapolation based on 1D theory works

* Conduct DNS studies of the counter-flow arrangement
with a two-dimensional code
* Verify that results are the same between the codes
— Auto-ignition —> test chemistry
— Unstretched premixed flame —> test coupling
 Compare results from 2D DNS to
— Experimental measurements
— One-dimensional code simulations

* Analyze if strain rate has the same effect in one-
dimensional formulation as in experiments
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Simulation Infrastructure

e 1D code : FlameMaster

e 2D code : NGA

— High-order energy conserving code using finite-
rate chemistry

— Allows for realistic simulation of the experimental
setup
* Detailed chemical mechanism used with 28
species in both codes
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Comparison Between Codes
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Comparison Between Codes

e Unstretched Premixed Flame

— Burning velocity for methane
at phi =
1D code : 25.6 cm/s
* 2D code: 25.5cm/s

* Conclusion:
Codes give very similar results
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Experimental Setup

Counter-flow symmetric

arrangement Experimental Setup
CH,/air, P =1 atm,
T=294K, phi=0.8 :

Mean nozzle exit velocity et — =
L~ ,v

— 45 cm/s — lowest strain ——== . r
— 97 cm/s 1 /AN ]
N, co-flow

CH,/ air
— 145cm/s — highest strain
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Experimental Nozzle Exit Profile

* Exit profile from the nozzle in the experiment not
completely uniform
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* To assess the sensitivity of profile, we simulate
— top-hat inflow profile (bulk)
— real experimental profile (actual)
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Simulation Domain

e Axisymmetry is assumed
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Experimental Setup
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Bulk Nozzle Exit Profile

* Mean axial velocity : 45 cm/s

T(K)
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Bulk Nozzle Exit Profile
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* Mean axial velocity : 45 cm/s
— Centerline comparison with 1D code
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Bulk Nozzle Exit Profile

* Mean axial velocity : 145 cm/s
— Centerline comparison with 1D code
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Bulk Nozzle Exit Comparison

* Top-hat profile assumed at nozzle exit

Bulk Inflow Burning Velocity (cm/s) | Strain Rate K (1/s) | Flame Location (mm)

Velocity 1D code 2D code 1D code 2Dcode 1Dcode 2D code
45 cm/s 29.89 30.53 114.5 115.6 9.34 9.39

97 cm/s 33.46 33.99 275.8 278.3 11.30 11.29
145 cm/s 35.90 36.88 410.2 412.0 12.01 12.01

* One dimensional assumption works within =2%
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Comparison With Experiment Resultsy '

Nozzle exit axial velocity = 45 cm/s

‘-
— Axial (m/s)
0.30 0.50 0.70

040 0.60

Centerline

Experiment Simulation

Magnitude (m/s)
030 0.50 070

= =

 Comparison good, but different flame position
* Better agreement not necessarily expected, because of simple chemical mechanism

Centerline
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Comparison With Experiment Results "

* Nozzle exit axial velocity =97 cm/s
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* Nozzle exit axial velocity = 145 cm/s

Mean Inlet Axial '
/A

Velocity : 1.45 m/s
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Summary

* Analysis of the 1D assumption used to
extrapolate stretched burning velocity

1D and 2D simulations performed

* DNS with top-hat inflow velocity compares
well with 1D code results

* Next step: Analysis of 2D simulations with
realistic inflow conditions



