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Kinetics Modules in Databases

Widely used
Problems with rich
mixtures

GRIMECH - methane (light hydrocarbon) combustion

Pyrolysis of fuels

Oxidation of larger fuels

Recent NIST
experimental and data
evaluation program

Target of most models
Focus of current
NIST work

Soot formation
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Many models, begin
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PREMISE OF WORK

There are simple correlations between structure of fuel molecules
and their rate constants for decomposition and isomerization

These correlations can be uncovered from an
examination of the literature
suitable experiments

theoretical treatments

FOR AHOMOLOGOUS SERIES DATA BASE FOR EVERY
LARGE FUEL MOLECULE CONTAINS AS ASUBSET THE
DATABASE FOR SMALLER FUEL MOLECULES

Physical and Chemical Properties Division
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DETERMINING MECHANISMS AND RATES OF
DECOMPOSITION OF FUEL RADICALS

Generate fuel radicals through decomposition of appropriate precursors; alkyl
iodide, branched hydrocarbons

Carry out studies in single pulse shock tube
dilute mixtures
short residence times
presence of inhibitors to isolate reaction

obtain direct measure of branching ratios

thermal cracking patterns

Convert to high pressure rate expressions

Extension to cover all combustion conditions

Physical and Chemical Properties Division
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SINGLE PULSE SHOCK TUBE AND ASSOCIATED WAVE
PROCESSES
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RADICALS STUDIED

C H3CH2CH2CH2CH2*
CH3CH2CH2CH2CH2CH2*
CH3CH2CH2CH2CH2CH2CH2*
CH3CH2CH2CH2CH2CH2CH2CH2*
CH2=CHCH2CH2CH2*
CH2=CHCHCH2CH2CH2*
CYCLOHEXYL
CYCLOPENTYL
CH3CH(CH3)CH2CH2CH2*
CH3CH(CH3)CH2CH2CH2CH2*
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NISI
MECHANISM AND BRANCHING RATIOS FOR THE

DECOMPOSITION OF OCTYL RADICALS
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MECHANISM AND BRANCHING RATIOS FOR REACTIONS

INITIATED WITH 5-METHYL HEXYL RADICALS
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Figure 1. Alkene yields from the decomposition of 5-methylhexyl
radicals. Symbols are experimental data: , = ethene; , = isobutene; , =
o = 3-methylbutene; , = cis-2-hexene; ,
hexene. The values for 1-hexene have been divided by two for clarity. The
lines represent fits from the RRKM/Master Equation model described in

= frans-2-hexene; , = 1-

| PhySicaI and Chemica| Properties DiViSion



WISER EQUATION SOLVER: PROGRAM TO DETERMINE

MOLECULAR DISTRIBUTION FUNCTION
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FALL-OFF BEHAVIOR FOR THE REACTION N-ALKYL =
ETHYLENE + 1-(N-2) OLEFIN FOR N=4 TO 8 AT 1 BAR

1.4
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U5 low reaction threshold

= 1.0 -
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2 0.6 slowly with molecular size
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0.4
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HIGH PRESSURE RATE EXPRESSIONS FOR OCTYL
RADICAL DECOMPOSITION AND ISOMERIZATION

A: Reaction Log A n E/R Log (k [1000])

1 1l-octyl = ethene + 1-hexyl 11.96 31 13708 6.93
2 2-octyl =propene + 1l-pentyl 10.78 .84 14001 7.24
3 3-octyl = 1-butene + 1-butyl 13.31 .04 14340 7.21
4 3-octyl = 1-heptene + methyl 9.98 1.08 14790 6.78
5 4-octyl= 1-pentene + 1-propyl 11.74 .55 14134 7.26
6 4-octyl = 1-hexene +ethyl 9.83 1.11 13600 7.25
7 l-octyl = 4-octyl (1-4-H trans) 71 3.23 8479 6.72
8 1l-octyl = 4-octyl (1-5-Htrans) 1.36 2.82 5413 7.46
9 1-octyl = 3-octyl A7 3.08 5544 7.29
10 4-octyl = 1 octyl 1-4-H trans -.38 3.57 9532 6.20
11 4-octyl = 1-octyl 1-5-H trans 27 3.16 6466 6.94
12 3-octyl = 1-octyl .52 3.11 6579 6.99
13 2-octyl=3-octyl 27 3.27 6642 7.20
14 2-octyl =4-octyl .15 3.32 8125 6.60
15 3-octyl = 2-octyl 1.33 2.96 6625 7.34
16 4-octyl = 2-octyl 071 3.32 8128 6.52
Compound Equilibrium constant of formation log [K,]

Octyl-1 -38.931-1.031x10° /T+4.904x10°%/T?-2.601x10°/T+4.473x10*/T*

Octyl-2 -39.196-1.941x10% /T+4.736x10°%/T?-2.554x10°/T>+4.403x10*/T*

Octyl-3 -39.098-5.633x10°/T+4.912x10°%/T*-2.608x10°/T3+4.485x10Y/T*

| Physical and Chemica| Properties DiViSion




NIST X IDATION OF FUEL RADICALS: PAST WORK

No direct studies leading to high pressure unimolecular rate expressions
Products from flame and cool flames sampling

Oxygenated organics
Unsaturated organics

Cyclic ethers

Thermal rate constants used in models: no consideration
of chemical activation processes

OH and HO, from smaller fuel molecules and modeling

Sandia (Taatjes)

Ab-initio calculations
Green et al
Merle et al

Bozzellie et al

Sandia (Klippenstein)

Physical and Chemical Properties Division
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STRATEGY FOR STUDYING RADICAL OXIDATION

Generate radicals as in pyrolysis experiments

Dilute concentrations of radicals

Vast excess of chemical inhibitor

Add sufficient amount of oxygen molecules to change reaction
direction from pyrolysis to oxidation

Determine cracking patterns as function of oxygen concentration

Reproduce oxidative cracking pattern through solution of
the master equation for chemical activation process
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SUMMARY OF EXPERIMENTAL RESULTS
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Rate Constants from Chemical Activation Processes

Radical + O, <=> RadicalOO* => Variety of products

Im

RadicalOO

k =k_ x branching ratio

(decomposition), or (stabilization),
Z all channels

branching ratio =

| Physical and Chemica| Properties DiViSion



N

ching Ratios for Products from n-Propyl Peroxy Radical Decomposition

500 K, 0.1 bar 500 K, 100 bar

CH3CHpCHo00* =H3=h2-H2

CH3CHCH,00 *=>CHSCH2CH2*+02

CH3CHCH,0O0 => propene + HO,

CH3CH,CH,00 *=>CH3CH2CH2*+02
KCHZ% CH>OOH
7 WQ,CHZCHZOO => propene + HJ,

*CHoCH2CNoOOH =>Oxetane + OH

*CHoCH,CHoOOH =>Oxetane + OH

CH3CH*CH,0OO0H => propene + HOp

*CH,CHoCH,OORNe> Ethylene + *CH,0O0H

CH3CH*CHZOOI&T19thy|oxirane + OH

CH3CH*CH,OOH

N\ A\

CH3CH*CHOOHN> prope

-6 1 *CHCHoCHoOO0H => %Qene :%mﬂ
WZH*CHZOOH = methywe + OH

mg,CHZCHZOO *=> propanaNH
T T T \ T
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Log[time,s] Log [time,s]

Log [branching ratio, products]
N

Log [branching ratio, products]
A
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TREATMENT OF DATA

Product (ethylene. Propene, 1-butene) = Kk, g,(butyl-I) + k; p(butyl)
+ Ko p(butyl) x O,

tetrahydrofuran (THF) = k,, 1(butyl) x O,

Product/ THF = ( ki g;(butyl-1) + k,.; o(butyl))/k,, +(butyl) x O,
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Oxidative Decomposition of n-Butyl Radical

CH3CH20H2CH2 * + 02

=

*CH,CH,CH,CH,O0H CH3CHCH,CH,O0H —> C3HgtxCH,OO0H

L\ o

HO + @o CoHy + *CHyCHOOH ——> CoHy + HO»

CH3CH,CH,CH,00 * —> CH3CH,CH=CH»>+HO,

Pyrolytic Decomposition of n-Butyl Radical
(through n-Butyl lodide)

CH3CH,CH=CH, +HI <~ CH3CH,CHoCHyl ——> CH3CH,CH,CHo %

* CH3CH, + CoHy

C2H4 +H
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MASS BALANCE
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ETHYLENE/THF RATIOS AS AFUNCTION OF
TEMPERATURE AND OXYGEN CONCENTRATION
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1-BUTENE/THF RATIOS AS A FUNCTION OF
TEMPERATURE AND OXYGEN CONCENTRATION

N

150, 1.54%

300,10.35%

600,10.15%

2.5
.0 1
5
1.0

[ 4H1/8HVD-T] 601

1.05 1.10 1.15 1.20

1000/T

1.00

0.90

Physical and Chemical Properties Division



~NsSCFC

PROPENE/THF RATIOS AS AFUNCTION OF
TEMPERATURE AND OXYGEN CONCENTRATION
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150.4.04%
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1000/T

Log [C,Hg/THF] = 2.92 -2120/T= .64 (930K)
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Ethylene/THF Yields as a Function of 1/O,:
Extrapolation to Infinite Oxygen Concentration

500

400 -

300 H
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Log [C,H,/(2xTHF)] = 7.35 - 6000/T =1.1 at 930 K
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1-BUTENE/THF Yields as a Function of 1/0O,: Extrapolation
to Infinite Oxygen Concentration

C 3Hg/THF

0 le+5 2e+5 3e+5 4e+5 5e+5
1/0, [mol/cc]

Log [1-C,Hy/THF] = 4.717 -3422/T
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OLEFIN VS TETRAHYDROFRAN YIELDS
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MECHANISTIC INFERENCES

Ethylene and propene are formed from beta bond scissions after H-
transfer isomerization

1-Butene is formed prior to isomerization

No formation of larger aldehydes

Contribution from oxirane (3) and oxetane (4) channels are neglible
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NEXT STEPS

Derive high pressure rate expressions

Reactions Basis for deriving rate expressions
CH3CH2CH2CHR* + O2 => CHBCH2CH2CH200* Merle et al and data on R+
CH3CH2CH2CH200* => CHBCHRCH=CIR + HO2 From 1-butene/THF

CH3CH2CH2CH200* = *CH2CH2CH2CH2O0H

From branching of ethylene”: 1-butene:propene

*CH2CH2CH2CH200H=>> CH3CH2CH2CH200*

Detailed balance

*CH2CH2CH2CH200H => CH2=CH2 + *CH2CH200H

From beta bond scission

CH3CH2CH2CH200* => CH3CH*CH2CH200H

From branching of ethyleneZ: 1-butene: propene

CH3CH*CH2CH200H = CH3CH2CH2CH200*

Detailed balance

CH3CH*CH2CH200H = CH3CH=CH2 + *CH200H From propene/ THF
*CH2CH2O0H = CH2=CH2 + HO2 Fast
*CH2000H = CH20 +OH Fast

CH2CH2CH2CH200H = Tetrahydrofuran + OH

From ethylene/THE, check with calculation of Wijaya et
al
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TASKS AND PROBLEMS

Molecular properties of oxygenates: hydroperoxides and peroxy radicals
depend on ab initio calculations

Fit results through solution of master equation using CHEMRATE

Expand data to cover all relevant combustion conditions
differentiate between chemical activation and thermal processing

Larger radicals: n-pentyl

Lower temperatures: smaller oxygen loading

Use nitrites

Physical and Chemical Properties Division
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SUMMARY

A new method for determining the mechanisms and rate constants
for the oxidation of alkyl radicals has been developed

Results have been demonstrated for n-butyl radicals generated from n-
butyl-iodide pyrolysis in varying concentrations of oxygen and excesses
of a chemical inhibitor

Ethylene is the main product, smaller amounts of 1-butene, propene
and THF are also detected

Results for limiting oxygen concentrations have been determined
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