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Practical hydrocarbon fuels present new  
challenges for kinetic modeling
• For many years, methane and propane were “large” fuel 

molecules, and they still can be challenging
• Most common transportation fuels produced from 

petroleum or other common sources contain molecules 
much larger than C1 to C4

• Hydrogen and C1 – C4 species will continue to be an 
essential part of fuel models and still need lots of work

• Large fuel species modeling requires significant 
computing resources

• Mechanism reduction will be necessary for applications 
with realistic geometry



Different applications require different fuel mixes

 Most practical fuels contain a complex mixture of 
HC molecules

 Refining produces a still-complex mixture that is 
“targeted” towards its application type

 Gasoline  6 < C < 10
 Jet fuel     9 < C < 13
 Diesel      13 < C < 22
 Molecular classes also are different in each 

application
 Use of “surrogate” fuels is becoming common
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There are two important pathways for 
practical fuel mixture mechanisms

 Reference fuels
• Gasoline - n-heptane and iso-octane
• Diesel  - heptamethyl nonane and n-hexadecane
• Jet fuel – n-dodecane (?) and iso-dodecane (?)

 For the first time, we now have detailed 
kinetic mechanisms for both diesel and 
gasoline primary reference fuels

 Surrogate fuels
4
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 Gasoline
n-heptane

 iso-octane

 Diesel
n-cetane

 iso-cetane

 Biodiesel
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Classes of compounds in practical fuels
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Gasoline has 
many 
branched 
alkanes

Gasoline is lower in
cycloalkanes

Jet fuel has the 
highest
n-alkane



Use of surrogate fuels is an important 
current theme in combustion chemistry

 First surrogate for diesel fuel was n-heptane

 Early surrogates included one representative 
from each fuel molecule class
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An early gasoline surrogate fuel mixture contained 
components from each class of molecules  
 n-heptane

 iso-octane

 pentene

 cyclohexane, methylcyclohexane

 toluene

 ethanol

CH3

CH3

OH



Further development of surrogate fuels

 Advantages of having multiple samples 
from each class of molecules

 Our research has been focused on 
developing kinetic models for many 
examples in each class

 Mechanism reduction can then be applied 
to those fuel components to be used
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Fuel Surrogate Palette for Diesel

n-alkane
branched alkane
cycloalkanes
aromatics
others

butylcyclohexane
decalin

hepta-methyl-nonane

n-decyl-benzene
alpha-methyl-naphthalene

n-dodecane
n-tridecane
n-tetradecane
n-pentadecane
n-hexadecane

tetralin
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Primary reference fuels for diesel include straight-chain and 
highly branched components

 Primary reference fuels for diesel ignition 
properties (cetane number)

 n-hexadecane 

 2,2,4,4,6,8,8 heptamethylnonane

Recommended surrogate for diesel 
fuel (Farrell et al., 2007):

n-hexadecane

1-methylnapthalene

n-decylbenzene

heptamethylnonane
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We have greatly extended the components in 
the palette that can be modeled in the high 
molecular weight range:

 n-octane          (n-C8H18)
 n-nonane         (n-C9H20)
 n-decane         (n-C10H22)
 n-undecane     (n-C11H24)
 n-dodecane     (n-C12H26)
 n-tridecane      (n-C13H28)
 n-tetradecane  (n-C14H30)
 n-pentadecane (n-C15H32)
 n-hexadecane  (n-C16H34)
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Includes high and low temperature ignition chemistry: 
Important for predicting low temperature combustion regimes

RH

R

RO2

QOOH

O2QOOH

olefin + HO2
cyclic ether + OH
olefin + ketene + OH

keto-hydroperoxide + OH

O2

O2

olefin + R

(low T branching)

RH

R

RO2

QOOH

O2QOOH

olefin + HO2
cyclic ether + OH
olefin + ketene + OH

keto-hydroperoxide + OH

O2

O2

olefin + R

(low T branching)
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Good agreement with ignition delay times at 
“engine-like” conditions over the low to high 
temperature regime in the shock tube

[K]

Shock tube experiments:
Ciezki, Pfahl, Adomeit
1993,1996

13.5 bar
stoichiometric fuel/air
fuels:
n-heptane
n-decane

Experimental
Validation

Data
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All large n-alkanes have very similar ignition properties
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New experiments agree with our computer predictions
Oehlschlager et al., Combustion and Flame
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Biodiesel fuels

Biodiesel fuels produced from various oleaginous plants
US: soybean / Europe: rapeseed

triglyceride

methanol
methyl ester glycerol

OO

O

O

O

O

R

R R

+ 3 CH3OH
OH

OH

OH

CH3
O

O

R

3 +

(R = hydrocarbon chain)
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Composition of Biodiesels
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Methyl stearate (n-C18 methyl ester) has the 
same ignition properties as large alkanes
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Biodiesel fuel mechanisms

 Together with Reaction Design, we are 
completing a detailed, full temperature 
range mechanism for all of the 5 
components of soy biodiesel

 Unique case where a practical fuel can be 
represented by all its components
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Comparison with n-Decane Ignition 
Delay Times
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RSE (5-ring) >

RSE (6-ring) > 

RSE (7-ring) >

RSE (8-ring)
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Interesting note

Experience with biodiesel 

and methyl esters 

suggests strategies for 

kinetic modeling of n-alkyl 

benzenes and n-alkyl

cyclohexanes

O

O



C  =  C  - C  - C  - C  - C           1-hexene 

C  - C  =  C  - C  - C  - C           2 – hexene 

C  - C  - C  =  C  - C  - C           3 – hexene

We have been modeling the effect of the position of the double bond

on ignition of olefins
Amount of low T
reactivity
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RCM Ignition delay times of hexene 
isomers (0.86-1.09 MPa, Φ=1): 

C  =  C  - C  - C  - C  - C           1-hexene 

C  - C  =  C  - C  - C  - C           2 – hexene 

C  - C  - C  =  C  - C  - C           3 – hexene



Rates of low temperature reactions producing 
chain branching depend on energy barriers
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Energy barrier  = BE (C-H bond) + RSE (ring strain)
+  ∆H (reaction) 

Double bonds in bio-diesel long chain molecules 
provide another interesting “wrinkle”.  Ring strain 
energies across one of these double bonds are 
dramatically larger than those across normal, 
saturated bonds, so double bonds strongly inhibit 
low temperature reactivity
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Composition of Biodiesels
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Branched hydrocarbons are different

 Both octane and cetane rating systems have a straight-
chain reference fuel that is easy to ignite and a branched 
reference fuel that is hard to ignite

 iso-octane and 2,2,4,4,6,8,8-heptamethyl nonane

 n-heptane and n-hexadecane

 Are all branched hydrocarbons as similar to each other 
as the straight-chain hydrocarbons?

 Very few laboratory experiments available for 
mechanism validation of HMN

 Base a reaction mechanism on previous sets of reaction 
classes
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Heptamethyl nonane is a primary reference fuel for diesel 

 One of the two primary reference fuels for 
diesel ignition properties (cetane number)

 n-hexadecane 

 2,2,4,4,6,8,8 heptamethylnonane

Recommended surrogate for diesel 
fuel (Farrell et al., 2007):

n-hexadecane

1-methylnapthalene

n-decylbenzene

heptamethylnonane
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C  - C  - C  - C  - C  - C  - C  - C  - C
C             C             C             C

C             C                            C

2,2,4,4,6,8,8-heptamethyl nonane is 2 iso-octane radicals

C  - C  - C  - C  - C              C  - C  - C  - C  - C •
C             C                             C             C

C              • C      

C  - C  - C  - C • • C  - C  - C  - C  - C
C             C                         C             C

C             C                                         C     

We should expect HMN kinetics to be quite similar to iso-octane
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HMN and iso-octane ignitions are slower than 
n-alkanes only in the Low Temperature regime

13.5 bar pressure
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Recent experimental results show 
excellent agreement with modeling

Oehlschlager data phi=0.5  13.5 bar
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Computed PRF Mixtures for Diesel

fuel/air mixtures
stoichiometric
40 bar Iso-octane

n-alkanes

HMN

50/50 HMN/nC16 (CN=57.5)

3670 species
10,087 reactions
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Heptane isomers provide an interesting family of fuels
RON varies from 0 to 112



Current development of iso-dodecane mechanisms

C     C    C    C    C
C  - C  - C - C - C - C - C

C            C           C
C  - C  - C - C - C - C - C

C                          C

Both isomers 

suggested by Sandia

as surrogates for jet fuel



All of these large molecule reaction mechanisms 
need many improvements

 RO2

 QOOH
 O2QOOH
 Major needs for collection, curation and 

evaluation of reactions, rates, 
thermochemisty, etc.

 Olefin site-specific reactions
 Continued refinement of C1 – C5 core 

mechanism
37



Proposed new project

 Team approach to develop a commonly 
accepted C1 – C4  core mechanism

 Incremental funding for participation

 Parallels with atmospheric chemistry 
programs at NASA, NIST and DOE

38



High value of making mechanisms widely available
http://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion
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