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Introduction: Surrogate Fuel Model Development
S th ti f l h t b d b bl di ith j t f l• Synthetic fuels have to be used by blending with jet fuel: 
– normal, branched, and cyclo alkanes, and aromatics

• MURI team selected surrogate jet fuel components• MURI team selected surrogate jet fuel components
– n-decane, methyl-cyclohexane, n-propyl- and trimethyl- benzenes, 

toluene…
By matching H/C ratio, sooting index, burning rates, ignition time…

• Example: Gasoline Surrogate model (PRF+1)
– Blending of toluene to n-heptane and iso-octane to match both 

burning and soot formation targets
• Challenge 1:• Challenge 1: 

How does the kinetic coupling between aromatics and alkanes
affect burning rate and extinction limit? g

How can we predict burning limits, flame speeds from mixing rule?
• Challenge 2: g

How to generate robust, efficient, & user friendly reduced kinetic 
models?  



1. Experimental Studies of Kinetic Effects of Diffusion 
Flame Extinction Limits

(Fuel Vaporization and Counterflow Burner)

• Experimental setup of the measurements of n-
decane/aromatics extinction limits
– Using FTIR measurements to check thermal decomposition and 

concentration variation: Concentration fluctuation < 1%concentration variation: Concentration fluctuation < 1%
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Experimental Measurements of OH Concentration 
b i l i d d flby using laser induced fluorescence 

• Nd:YAG Laser : Quanta-Ray (532 nm), Cobra-stretch dye laser
• ICCD Camera : PIMAX-Gen II (Princeton Instrument)
• PLIF: Q1(6) transition (282.93 nm), linear regime, beam height 80 mm

Quenching correction n decaneQuenching correction n‐decane

OH PLIF(a)

blended fuel
OH

OH PLIF( )
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Schematic photo for Rayleigh scattering and PLIF PAH PLIF(c)



Extinction limits of toluene blended n-decane–air Mixtures
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Validation of n-decane-toluene mechanism: Extinction Limits
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Kinetic coupling between toluene fragment H abstraction reactions 
with chain-branching reactions

C6H5CH3+H<=>C6H5CH2+H2
n-decane, Xf = 0.05
80% n-decane + 20% toluene, Xf = 0.06

C6H5O+H(+M)<=>C6H5OH(+M)

C6H5CH2+H<=>C6H5CH3
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Kinetic coupling between toluene fragment H abstraction reactions 
with chain-branching reactions
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Validation of Kinetic Mechanism (OH concentration)( )
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Thermal and Kinetic effects on Extinction Limits 
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Low dimensional correlation between strain rate and heat release
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Linear Correlations between OH concentration and extinction limit
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Linear correlation of extinction limits for toluene-n-decane mixtures
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Update of toluene kinetic mechanismp
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2. A Dynamic Multi-Time Scale (MTS) Method with2. A Dynamic Multi Time Scale (MTS) Method with   
Path Flux Analysis (PFA) for Mechanism Reduction

– Dynamic (Hybrid) Multi Timescale Method (MTS/HMTS) 
– A Path Flux Analysis (PFA) Method for Mechanism Reduction
– Validations of MTS using ignition, steady/unsteady flames

Reduced mechanisms generated by existing approaches remainReduced mechanisms generated by existing approaches remain 
•Very large 
•Broad reaction timescale distributions and physical interests
•Quasi steady assumption ILDM only apply to limited conditions•Quasi-steady assumption, ILDM only apply to limited conditions.

Can we develop a simple, rigorous, time accurate method?



Multi Timescale (MTS) Method
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MTS to HMTS
Hybrid Multi Timescale (HMTS) Method
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Validation by homogeneous ignition

Ignition in

n-decane/air 121 species (M. Chaos, IJCK, 2007)
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Computation efficiency: comparison with ODE solverp y p

Normalized by the computation time of ODE solver
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Validation by propagation of unsteady spherical flamesy p p g y p
Detailed Mechanism

Outwardly propagating spherical n-decane flames 
(ASURF-1D Princeton)

Flame front

Ignition pointIgnition point



Can we further reduce the computation time?

A Path Flux Analysis (PFA) Method for
M h i R d ti

p

Mechanism Reduction

Reaction path, DRG & DRGEP
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Path Flux Analysis Method
• Both forward and backward 

flfluxes
• Both direct and indirect relations 

r are conservative
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Validation by n-decane homogeneous ignition
Ignition delay times Perfect Stirred Reactor
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Skeletal mechanisms of different sizes
Comparison of PFA with DRG 

0 01
T0=1200 K

0.01

g (s
)

 detail 
 DRG 
 PFA 

1E-3

 τ ig

1 atm

50 60 70 80 90
 

1E-3

 

20

τ ig
 (s

)

50 60 70 80 90
1E-4

 

20 atm

Number of species in skeletal mechnism

24



Integration of HMTS & PFA : Comparison of ODE & HTMS

Outwardly propagating spherical n-decane/air flame
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Conclusion
Ki ti li ff t t l th ti ti li it f bl d d lk d• Kinetic coupling affects strongly the extinction limits of blended alkane and 
aromatic fuel mixtures.

• Measurements of aromatic fuel fragments and OH concentration are important g p
to develop validated kinetic mechanisms for blended fuel mixtures.

• The extinction limits of toluene blended n-decane mixtures are found linearly 
d d t th i OH t ti ti di l i ddependent on the maximum OH concentration, suggesting as a radical index. 

• A simple linear correlation between extinction limits and fuel properties is 
obtained for n-decane/toluene blended fuel mixtures.obtained for n decane/toluene blended fuel mixtures.

• A new dynamic multi-timescale (MTS) model and a hybrid MTS model are 
developed. Both MTS and HMTS methods have excellent accuracy and 
i d i ffi i f i i i d fl i h d il d h iimproved computation efficiency for ignition and flames with detailed chemistry.

• A Path flux analysis (PFA) method is developed for mechanism reduction. The 
method has better model accuracy in a broad temperature and pressure ranges.method has better model accuracy in a broad temperature and pressure ranges.

• The integration of MTS/HMTS with PFA mechanism reduction can 
dramatically enhance the computation efficiency.



F t kFuture work:
•Kinetic effects on extinction limits of n-decane/n-dodecane
with trymethylbenzene n propylbenzenewith trymethylbenzene, n-propylbenzene
•Development of radical index to construct extinction correlation
•Experimental data of flame speeds at elevated pressures 
•Reduced mechanism development using MTS/PFA for aromatic  
fuels 
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