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Fuels Combustion Research Laboratory’s contribution to 
CEFRC efforts
Generation of motivating fundamental experimental observations that elucidate the 
interactions of bio-derived molecular components and structures with components found in 
petroleum derived fuels.
Provision of experimental validation data for development and refinement of detailed kinetic 
models for esters and alcohols.
Experimental determination of elementary kinetic rates important to the decomposition and 
oxidation of hydrocarbons and hydrocarbon oxygenates.

Accomplishments
Chemical Kinetics of iso-Propanol and t-Butanol Pyrolysis and  Oxidation

Auto Ignition of n-heptane/Butanol Blends in Ignition Quality Tester

Methyl Formate Decomposition, and Oxidation in Low Pressure Flames

An Updated Kinetic/Transport Model for H2/O2
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} Bio-derived 
fuels

} Sub-model improvements
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Flow reactor study on iso-propanol and tert-butanol

Motivation
Lower soot / polyaromatic hydrocarbon emissions.
Few studies on next generation, higher molecular weight 
oxygenated fuels        Experimental data needed for extensive model 
validation.
Experimental determination of the dehydration rate constants for
n/i-propanol and tert-butanol.
Detailed speciation data for alcohol oxidation obtained at T<950 K.
Detailed mechanistic study is needed to understand the combustion 
of these alcohols and interactions with two stage kinetics of large 
carbon number hydrocarbons.

4



5

Experiment T (K) P (atm) Molar conc’n
(ppm)

Pyrolysis History 800 –1000 12.5 5000

Pyrolysis Reactivity (τ = 1.8 s) 550 –1025 12.5 5000

Oxidation Reactivity (τ = 1.8 s, φ=1) 520 – 1010 12.5 2500
Pyrolysis with radical trapper 
(1,3,5-TMB) 900 - 1000 12.5 1200 equimolar

Experiment T (K) P (atm) Molar conc’n
(ppm)

Pyrolysis History 720–1000 12.5 2500

Pyrolysis Reactivity (τ = 1.8 s) 500 – 975 12.5 2500

Oxidation Reactivity (τ = 1.8 s, φ=1) 676– 918 12.5 2500
Pyrolysis with radical trapper 
(1,3,5-TMB) 1020, 1080 3.0 1540 equimolar

Iso-propanol

Tert-butanol



Level to which water and olefin yield in equal quantities gives evidence of radical 
trapper methodology.  Rate of dehydration reaction extracted experimentally
iso-propanol: i-C3H7OH ↔ C3H6 + H2O
tert-butanol: t-C4H9OH ↔ C4H8 + H2O
Radical trapper addition to extract water elimination rate constant
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Motivation 
Isomers of butanol have been identified as promising candidates of 
2nd generation bio fuels.
Little fundamental work available on how these alcohols interact
with hydrocarbons found in conventional petroleum derived fuels-
likely end use scenario for these bio generated materials.
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Objectives
Scan ignition behavior trends in isomeric structures.

Engine-relevant pressure, temperature and fuel loading.
Identify “interesting” behaviors to focus more 
fundamental studies.

Examine kinetic coupling of components in fuel blends.

Experiments: A study of comparative ignition quality
Trends in reactivity extendable to conventional HCSI, DICI 
engine applications as well as high-efficiency PCCI future 
designs.
Comparisons among butanols at similar volumetric 
blending  in n-heptane and a real low-cetane diesel fuel.
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Pure Component Avg. Measured DCN MON

t-butanol <7.18 94

i-butanol 8.51 94

2-butanol 8.54 91

n-butanol 12.02 78

n-heptane 53.8† 0†

Increasing
Reactivity

1-butanol (+/-)2-butanol i-butanol t-butanol
(TBA)

CH3 OH CH3
CH3

OH
CH3

OH CH3

CH3

CH3

OH
α-hydrogen C-H bond sites indicated
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Increasing alcohol content Increasing alcohol content
DCN sensitivity of -0.33 DCN/vol%

t-butanol shows 
significantly 
different behavior
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Radical pool generation relatively slow in pure TBA
Unimolecular processes slow at IQT conditions, mostly abstraction reactions 
governing ignition.
Low temperature O2 addition reactions evidently less important (Cullis & 
Warwicker) than for large carbon number hydrocarbons.
β hydrogen atoms less prone to abstraction than α atoms

BDEs of ~101 vs. 93-95 kcal/mol.
Subsequent radical decomposition leads to straight-chain reactions and 
stable products.

X + TBA → XH + •CH2(C)(CH3)2OH (abstraction)
•CH2(C)(CH3)2OH → i-butene + OH (β-scission)

for X=OH, product is H2O

Key difference between TBA & other BuOHs is selectivity of OH 
generation process: other BuOHs will mostly produce less reactive HO2
radical.
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Motivation – (1) Diesel Combustion
Methyl formate (MF) is major intermediate in Dimethoxy methane 
(DMM) oxidation and dimethyl ether (DME) oxidation in presence of 
NOx.
Understanding chemical mechanism of MF oxidation => refine 
understanding of DMM/DME oxidation.

Motivation – (2) Biodiesel Combustion
Biodiesel consists primarily of long alkyl chain methyl esters.
Role of ester functionality on biodiesel oxidation remains to be fully 
understood quantitatively.
Study of smaller carbon number esters can lead to better 
understanding of functional behavior in large carbon number 
species.

Methyl formate is simplest methyl ester.
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Dooley et al. Int. J. Chem. Kin. 2010.
Validation - High temperature shock tube ignition delays. 

- Laminar burning velocities.
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MF shock tube ignition delay times. 
Experiment (symbols) and simulation (lines).
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Flow reactor speciation data measure methanol, formaldehyde and 
methane from MF oxidation.

Pyrolysis measurements show
large amounts of methanol and
carbon monoxide, indicative of 
molecular decomposition of 
methyl formate.

Kinetics of MF decomposition
highly contentious, reported 
activation energies span
48‐77 kcal mol‐1(!)
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Calculated concentration of CH3OH* in the reactor environment at  975 K, 3 
atm, 14.344 g/s flow rate of 5000 ppm of MF in N2.

Axial profile of MF and gas phase (methanol) vs potential heterogeneous 
catalytic (methanol*) products for 5000 ppm MF in N2 at 3 atm at the center 
line (lines and symbols represent  calculations and experiments, CO omitted 
for clarity) 

900 K 975 K

Potential effect of wall catalytic 
reactions evaluated by 
conducting LES of the entire 
VPFR geometry.

Products of wall catalytic 
processes confined in the 
viscous sub-layer region.

Heterogeneous surface 
perturbations cannot 
significantly affect the 
measurement of the gas phase 
reaction (of negligible quantity at 
the center line less than 4%)

CH3OCHO(surface) ↔ CH3OH*
(surface) + CO*

(surface)
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Model captures experimental measurements well. 
Manuscript in review with further details and analyses. 

Experimental data (symbols) and simulation (lines) of MF oxidation in MF/O2/Ar , Φ = 1.0-1.8, 22-30 Torr flames
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H2/O2 kinetic sub-model - Fundamental topic w/ applications:
Hierarchical development of all HC kinetic models.
Accurate kinetic/transport models needed for syngas and high 
hydrogen content fuels to be used in IGCC applications.

High pressure, low flame temperature, fuel-lean and/or 
diluted combustion conditions used in most applications (to 
control NOx emissions).
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Substantial H2/O2 modeling difficulties in high-
pressure dilute flames

H2/O2 modeling difficulties 
affect high-pressure HC 

flame predictions

M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, Combustion and Flame 157 (2010) 618-631.

M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute (2010) in press.
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‣ Updated model uses the 19-reaction mechanism of Li et al.
To incorporate recent studies on elementary reactions.
To improve model performance at high-pressure flame conditions.

‣ Treatment of the following processes/reactions were revised:
Temperature and pressure dependence of HO2 formation / 
consumption reactions:
• H+O2(+M)=HO2(+M) 
• HO2 + H/O/OH/HO2

Other reactions updated:
• e.g. H2O2(+M)=OH+OH(+M), OH+H2O2=H2O+HO2, H+OH+M=H2O+M.
Transport updated:
• e.g. H, H2.

‣ Major sources of remaining uncertainties:
Temperature (and pressure) dependence of HO2+H/OH/O/HO2.
Fall-off behavior and mixture rules for H+O2(+M)=HO2(+M).

M.P. Burke, Y. Ju, F.L. Dryer, S.J. Klippenstein, “An updated model and discussion of challenges for 
modeling the H2/O2 reaction mechanism in high-pressure flames,” in preparation for IJCK (2010).
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Practical combustion=>multi-species bath gas.
At best, models assume linear mixture rule:

At worst, common modeling approaches yield n 
times high-pressure limit =>but
Different components of a multi-component bath 
gas “interact” in unimolecular reactions
Nonlinearities stronger when:

<ΔE> difference is larger
Each component has nearly equal contributions to 
rate constant
Reaction is in intermediate fall-off

Preliminary calculations and those of Troe (1980)
show ~10% nonlinearities in low-p limit
~10% mixing effects yield 15% differences in 
burning rate predictions
Behavior highly dependent on <ΔE> values

i
i

i XPTkk ⋅= ∑ ),(

• M.P. Burke, Y. Ju, F.L. Dryer, S.J. Klippenstein, “An updated model and discussion of 
challenges for modeling the H2/O2 reaction mechanism in high-pressure flames,” in 
preparation for IJCK (2010).

1. J. Troe, Ber. Bunsenges. Phys. Chem. 84 (1980) 829-834.
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Reproduces previous validation targets 
of Mueller et al. and Li et al. including 
flow reactor speciation, ignition 
delays, and flame speeds.

Shows significant improvements 
against high-pressure, low-flame-
temperature data.
Predicts wide range of flame speed 
targets within 20%.

M.P. Burke, Y. Ju, F.L. Dryer, S.J. Klippenstein, “An updated model 
and discussion of challenges for modeling the H2/O2 reaction 
mechanism in high-pressure flames,” in preparation for IJCK (2010).



23

Continuing efforts to contribute elementary rate 
constant measurements and kinetic system 
validation data using flow reactor techniques.

Contributions to the small molecule chemistry 
that is important to high pressure oxidation 
kinetics of these materials.

Development of chemical kinetics model for bio-
derived fuels.



24

Research Staff: Drs. Stephen Dooley and Tanvir Farouk
Graduate Students: Francis M. Haas, Joshua S. Heyne, Michael 

P. Burke, Zeynep Serinyel
Undergraduates: Amanda Ramcharan
Technical Staff: Timothy Bennett, John Grieb, Joseph Sivo

Collaborations
Dr. Steven Klippenstein (Argonne National Laboratory)
Drs. Nils Hansen and Bin Yang (Sandia National 

Laboratories)
Dr. Terrance Cool (Cornell University)
Dr. Henry Curran (National University of Ireland, Galway)




