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One of Our Project’s Long-term Goals:
Fuel, Engine, and Combustor Designers
Can Quickly Predict Performance of any Fuel
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RMG's
Mechanism
Construction:

1) Apply reaction operators
to species in “core” to

generate new rxns & species.

2) Estimate rate coefficients
for new reactions, and
thermo for new species.

3) Integrate kinetic equations:

If rate of formation of an
“edge” species is ever larger

than tolerance, add to “core”.

4) Iterate.

5) Repeat at each reaction

condition, using model so far

as “initial model”
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Chemical Activation: Leap over several

Chemical Potential Energy

barriers faster than thermalization

Some CH3 formed
as fast as propene
° IS consumed

Molecular Geometry (“Reaction Coordinate”)



Must modify
Mechanism
Construction
Algorithm to
Identify
chemically-
activated paths
that jump over
several transition
states before
thermalization.

See papers by
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Butanols Model vs. Data

 Many new datasets measured by CEFRC and
several more measured by our colleagues
outside CEFRC.

— Data is coming in faster than we can simulate it!

 Some datasets with no figures In this talk:
— Premixed flames (N.H., HW., K.K.-H. & F.QI)
— Extinction strain rates, flame speeds (C.K.L., F.E.)
— Butanol, butanal ignition (R.H.+D.D., Galway group)
— OH+butanols (R.H.+D.D.)
— 2-d doped methane flame (McEnally & Pfefferle)
— t-butanol in PFR (Dryer)
— butanols + heptane non-intuitive mixing rule (Dryer)

(about half of these have been compared with latest model so far)



RMG-constructed model for Butanol
combustion vs. many different experiments
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Ignition Delay / us

Ignition Delay / us

0.25% n-BuOH

0.25% iso-BuOH
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The kinetic model also predicts
the pyrolysis product distribution well,
iIncluding benzene and small aromatics
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Butanol model predictions vs. Jet-Stirred Reactor
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Ignition Delay / ms

Model accurate at many conditions...
...but wrong at low T, high [O,]
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Butanols: Status

e 2 published models

— 1-butanol Combust. Flame (2010)
— Ind. Eng. Chem. Res. (2010)

e 2-butanol + t-butanol + improved 1-butanol

o Latest (unpublished) model includes iso-butanol

 Need to discuss team publication plans

— Team publication in Science (write article late 2010)
 If you have suggestions, please talk with Bill

— Numerous experimental publications

« Some by single Pls, probably using published models

« Some jointly-authored with modelers (e.g. Hansen and |
have agreed joint US Combustion Meeting paper).

 Publish latest model including isobutanol back-to-back
with experimental paper(s)?

Proposal: wrap up butanol chemistry model (for now) around end of
2010, polish off publications in 2011. Someone (who?) reduce model
for use in engine, multi-d flame simulations?



Main Challenge: Accurately
Estimating/Computing Rates

 \Worked on several rate-estimation issues
this year:
— Coupled hindered rotors (Truhlar)
— Radical+Radical reactions (Klippenstein, Miller)
— Automated NJB Green method for k(T,P), better

p(E)

— Thermo for small molecules, fused rings
— Biradicals (from ring-opening) with Piecuch

« Many CEFRC team members also working
on rate computations, method development.

None of above issues is completely resolved



More Challenges

Additional rate-estimation issues pending
— Roaming Radicals (fast estimates? Routine calcs?)

— “H-bonding” (submerged) transition states: OH and carbonyl
groups direct radicals, affect selectivities?

— Small molecule reactions: How to resolve conflicting
mechanisms? Should we calculate every reaction?

Memory problems for large mechanisms
— Has model-construction really converged?

Numerical Simulator issues for some experiments (esp.
with large stiff mechanisms)

Need better Version Control: big team, multiple models,
multiple simulators & approximations, multiple versions of
databases, multiple rate-estimation procedures.

Need to upgrade error-propagation and model-data
comparison, especially as discrepancies get smaller.
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