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Experimental

e Laminar flame speeds at
elevated pressures
determined from expanding
spherical flames in heated
constant-pressure bomb

e Nonpremixed ignition
temperature and flow strain
rate determined using
variable pressure stagnating
heated air over fuel pool
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Specification of Fuels and Mechanisms

Fuels studied: n-butanol, iso-butanol, methyl butanoate

Detailed mechanisms
* n-Butanol: Dagaut 2009 (Mech. A); 117 species and 884 reactions
e Methyl butanoate
- Dagaut 2008 (Mech. B); 275 species and 1549 reactions
» Curran 2009 (Mech. C);301 species and 1516 reactions
Algorithms for mechanism reduction
o Skeletal reduction: DRG and DRGAGA
* Time-scale analysis: CSP
Reduced mechanisms
e Mech. A: gi-species skeletal and 66-species reduced mechanisms
e Mech. B: 102-species skeletal and 68-species reduced mechanisms
e Mech. C: 87-species skeletal and 60-species reduced mechanisms




Temperatures

e n-Butanol
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Results and Comparisons: Ignition

e n-Butanol vs. iso-Butanol

Ignition Temperature (K)
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Results and Comparisons:TLaminar Flame
Speeds

e N-Butanol & iso-Butanol

® Methyl butanoate
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Effects of Hydrogen Addition on
Laminar Flame Speeds of
Hydrocarbon/Air Flames




Possibility of Near-linear Correlation

® Previous experimental study on methane and propane
showed an almost linear correlation between laminar
flame speed and an addition parameter Ry,.
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Current Study

e Linearity further confirmed

* Independent investigation using
two different expanding
spherical flame burners

- Single chamber at Xi’'an
Jiaotong University in China

« Double chamber at Princeton

» Ethane, ethylene, acetylene,
butane

e Lean and rich

* Experimentally and
computationally
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Dominant Cause of Near-linearity

* Influence due to hydrogen

addition
* Flame temperature (T,,)
: (S°)* ~ Leexp(-E, /R°T,,)

 Kinetic augmentation (E,)
e Enhance diffusion (Le)

e Sensitivity analysis shows:
E = =le
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Soot Formation and Disruptive
Burning of Droplets of Diesel,
Biodiesel and Ethanol Blends




Motivation of Study

e Characteristics of diesel fuels:
* Less volatile (than gasoline)
* Sooty
e Candidate biofuels for diesel applications
* (Bio)-ethanol: volatile and non-sooting
* Biodiesel: less volatile than diesel, less sooty

e Develop strategy for blending to improve burning
characteristics of diesel

e Reduce soot

e Manipulate volatility differential to optimize liquid fuel
gasification
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Biodiesel Blending: Soot Reduced

(b) (c) (d) (c)

Blending ratio
(a) Neat diesel
(b) 10% biodiesel
(c) 20% biodiesel

(d) Neat diesel
(e) hexadecane




thanol Blending: Soot Reduced and
Droplet Exploded (Hence gasified)
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a) Neat diesel
b) 25% ethanol
c) 50% ethanol
d) 75% ethanol
e) Pure ethanol
10% biodiesel
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Future Work

Flame data, modeling, and mechanism reduction for
biofuels

Soot studies of biofuels using stagnation and
counterflow flames

Experiments on high-pressure turbulent expanding
flames

Liquid-phase reactions within gasifying/burning
high-boiling-point fuel droplets
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