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Motivation
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• Skeletal and reduced reaction models for hypersonic propulsion applications

FOCUS:
• C1-C4 skeletal and reduced reaction models, eg. hydrogen, methane,
ethylene, propene, 1-butene, ...
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Principal Component Analysis with Sensitivity (PCAS)
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• Starting point of PCAS is the construction of response function (Vajda, Valko,
and Turanyi (1985)):

Q(P) =
q∑

j=1

m∑

i=1

[
fi(xj ,P)− fi(xj ,P0)

fi(xj ,P0)

]2

where P, P0 are unperturbed and perturbed parameters (k = 1, ..., p); fi a
set of target functions (i = 1, ..., m); xj collection of analysis points
(j = 1, ..., q).
• Around P0, the response function can be approximated as:

Q(P) ≈ q(P) = (∆P)T STS(∆P) = (∆P)T UT ΛU(∆P) =
p∑

k=1

λk(∆Ψk)2

where ∆P = P−P0; S collection of sensitivity matrices; λk eigenvalues; U
normalized eigenvectors; ∆Ψ = UTP principal components.
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Combined Response Function for Ignition, Propagation, and
Extinction
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• Can combine sensitivity matrices for any phenomena of interest and
construct a combined response function:

QC(P) =





l∑

j=1

m∑

i=1

[
fi(xj ,P)− fi(xj ,P0)

fi(xj ,P0)

]2




phen 1

+





l∑

j=1

m∑

i=1

[
gi(xj ,P)− gi(xj ,P0)

gi(xj ,P0)

]2




phen 2

+ . . . +





l∑

j=1

m∑

i=1

[
hi(xj ,P)− hi(xj ,P0)

hi(xj ,P0)

]2




phen α

,

where target functions fi, gi, hi, ... can be any phenomenon α.



Selection of Target Functions or Sensitivities
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• Structural features, eg. Yi, T, ωi, q̇, ...

• Global features, eg. ignition delay, burning velocity, extinction limits, ...

• In this work, sensitivities of T, q̇, τ, S0
L, aext have been included.

• In particular, ∂q̇/∂kk is evaluated from

∂q̇

∂kk
=

∂T

∂kk

Nsp∑

i=1

cpiω̇i +
∂T

∂kk

Nsp∑

i=1

hi

[
r∑

k=1

(
βk

T
− Ek

RoT 2

)
νikω̂k

]
+

+ ρ

Nsp∑

i=1

hi




Nsp∑

l=1

(
1

Wlcl

∂Yl

∂kk

r∑

k=1

νikν
′
lkω̂k

)
 +

Nsp∑

i=1

hiνik

Nsp∏

l=1

c
ν
′
lk

l
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Selection of Temporal or Spatial Location for Sensitivity Ana-
lyis
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• To minimize the size of combined sensitivity matrix, optimum temporal (in
homogeneous ignition) or spatial (in pre-
mixed and non-premixed flames) locations were selected for sensitivity analysis.
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Selection of Number of Modes
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• Number of eigenvalues and eigenvectors to be retained in PCAS analysis is
somewhat uncertain!
• For ignition and for 9 distinct cases of initial conditions:
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• Error measure is integrated over the range of T0 and φ:
||εign||L2 = [

∫ φb

φa

∫ Tb

Ta
((τign,skel − τign,det)/τign,det))2dTdφ]1/2
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Skeletal Models Based on Ignition Analysis Only
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• USC Mech II(opt) (Sheen et al., 2009) with 111 species in 784 reactions.
• Application to ignition of ethylene-air mixtures at p =1 atm.
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Skeletal Models Based on Flame Propagation Analysis Only
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• Ethylene-air mixtures at p=1.0atm and T0=300 K.
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Skeletal Models Based on Flame Extinction Only
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• Non-premixed ethylene and air, at p=1.0atm, T0=300 K.
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Can Extinction limits be Predicted by Ignition and Propaga-
tion Analysis?
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• Comparison of the extinction limit error predicted from models based on
ignition, propagation, and extinction analyses.
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Combined Skeletal Models
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• From combined analysis, two skeletal models have been recommended for
ethylene-air mixtures (37 and 38 species) – see Esposito and Chelliah,
Combustion and Flame, in print.
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• QSSA Reduction Approach has been applied to derive a new 20-step
reduced reaction model [20 species + 3 species (element conservation)]



Reaction Rate Uncertainty Analysis and Error Propagation
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• Monte Carlo simulations have been performed to understand the impact of
rate constant uncertainties on flame extinction predictions
— full MC simulations require 2p calculations, where p = 784! Impossible!
— used screening methods, i.e. local sensitivity and Morris method
(r × (p + 1) ≡ 15700 simulations), to identify top 14 reactions
• Morris method results:
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Reaction Rate Uncertainty Analysis and Error Propagation
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• full MC simulation of 14 reactions requires 3× (214) = 49152 flame
calculations (about 2000 days!) - used distributed computing!
• From MC simulation of 14 rate constant uncertainties on flame extinction, can
identify (i) non-linear contributions and (ii) error propagation (forward and
backward)
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Reaction Rate Uncertainty Analysis and Error Propagation
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• From MC simulation of 14 rate constant uncertainties on flame extinction, can
identify (i) non-linear contributions and (ii) error propagation (forward and
backward)
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Reaction Rate Uncertainty Analysis and Error Propagation
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• From MC simulation of 14 rate constant uncertainties on flame extinction, can
identify (i) non-linear contributions and (ii) error propagation (forward and
backward)
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• Used an uncertainty factor of 1.2 for H+O2=OH+O and MC results show that
high end is most probable???



Conclusions
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• PCA based methods can be used efficiently to derive skeletal reaction
models

• Prediction of flame extinction is often the limiting factor for further reduction
of the size of skeletal reaction models

• Previously reported QSSA approach has been utilized to obtain a 20 step
reduced reaction model for ethylene

• High-performance computing facilities have been utilized to explore
first-order and second-order effects of rate constants controlling flame
extinction, formation of soot precursors, etc.

⇒ this approach can also be used to narrow the uncertainty factor knowing
accurate uncertainty bounds of experimental data
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