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Motivation

e Skeletal and reduced reaction models for hypersonic propulsion applications
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e C1-C4 skeletal and reduced reaction models, eg. hydrogen, methane,
ethylene, propene, 1-butene, ...
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Motivation

e Skeletal and reduced reaction models for hypersonic propulsion applications
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Principal Component Analysis with Sensitivity (PCAS)

e Starting point of PCAS is the construction of response function (Vajda, Valko,
and Turanyi (1985)):

! f’L 9 fZ( 7PO)
Py =3y | F

1=1 1=1

where P, P9 are unperturbed and perturbed parameters (k = 1,...,p); f; a
set of target functions (z = 1, ..., m); x; collection of analysis points

=1 ..9).

e Around P9, the response function can be approximated as:

Q(P) ~ q(P) = (AP)! STS(AP) = (AP)! UTAU(AP) = zp: A (AW)?
k=1

where AP = P — P9; S collection of sensitivity matrices; )\ eigenvalues; U
normalized eigenvectors; AW = U’'P principal components.
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Combined Response Function for Ignition, Propagation, and
Extinction

e Can combine sensitivity matrices for any phenomena of interest and
construct a combined response function:
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where target functions f;, g;, h;, ... can be any phenomenon «.
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Selection of Target Functions or Sensitivities
e Structural features, eg. Y;, 1T, w;, q, ...
e Global features, eg. ignition delay, burning velocity, extinction limits, ...
e In this work, sensitivities of T', ¢, 7, S, ac.+ have been included.

e In particular, 0¢/0ky, is evaluated from
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Selection of Temporal or Spatial Location for Sensitivity Ana-
lyis

e To minimize the size of combined sensitivity matrix, optimum temporal (in
homogeneous ignition) or spatial (in pre-
mixed and non-premixed flames) locations were selected for sensitivity analysis.
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Selection of Number of Modes

e Number of eigenvalues and eigenvectors to be retained in PCAS analysis is
somewhat uncertain!
e For ignition and for 9 distinct cases of initial conditions:
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e Error measure is integrated over the range of Ty and ¢:
T
“ yeign‘ ‘LQ — [fib Tab ((Tign,skel — Tign,det)/Tign,det))Qde¢]1/2‘
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Skeletal Models Based on Ignition Analysis Only

e USC Mech ll(opt) (Sheen et al., 2009) with 111 species in 784 reactions.
e Application to ignition of ethylene-air mixtures at p =1 atm.
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Skeletal Models Based on Flame Propagation Analysis Only

e Ethylene-air mixtures at p=1.0atm and 7{,=300 K.
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Skeletal Models Based on Flame Extinction Only

e Non-premixed ethylene and air, at p=1.0atm, 7p=300 K.
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Can Extinction limits be Predicted by Ignition and Propaga-

tion Analysis?
e Comparison of the extinction limit error predicted from models based on

ignition, propagation, and extinction analyses.
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Combined Skeletal Models

e From combined analysis, two skeletal models have been recommended for
ethylene-air mixtures (37 and 38 species) — see Esposito and Chelliah,
Combustion and Flame, in print.
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e QSSA Reduction Approach has been applied to derive a new 20-step

reduced reaction model [20 species + 3 species (element conservation)]

UNIVERSITY
== 7 \VIRGINIA

III 12716



Reaction Rate Uncertainty Analysis and Error Propagation

e Monte Carlo simulations have been performed to understand the impact of
rate constant uncertainties on flame extinction predictions
— full MC simulations require 2P calculations, where p = 784! Impossible!

— used screening methods, i.e. local sensitivity and Morris method
(r X (p+ 1) = 15700 simulations), to identify top 14 reactions
e Morris method results:
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Reaction Rate Uncertainty Analysis and Error Propagation

e full MC simulation of 14 reactions requires 3 x (2!%) = 49152 flame
calculations (about 2000 days!)

e From MC simulation of 14 rate constant uncertainties on flame extinction, can
identify (i) non-linear contributions and (ii) error propagation (forward and

backward)

- used distributed computing!
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Reaction Rate Uncertainty Analysis and Error Propagation

e From MC simulation of 14 rate constant uncertainties on flame extinction, can
identify (i) non-linear contributions and (ii) error propagation (forward and
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Reaction Rate Uncertainty Analysis and Error Propagation

e From MC simulation of 14 rate constant uncertainties on flame extinction, can

identify (i) non-linear contributions and (ii) error propagation (forward and
backward)
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e Used an uncertainty factor of 1.2 for H+O2=0H+0O and MC results show that
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Conclusions

e PCA based methods can be used efficiently to derive skeletal reaction
models

e Prediction of flame extinction is often the limiting factor for further reduction
of the size of skeletal reaction models

e Previously reported QSSA approach has been utilized to obtain a 20 step
reduced reaction model for ethylene

e High-performance computing facilities have been utilized to explore
first-order and second-order effects of rate constants controlling flame
extinction, formation of soot precursors, etc.

= this approach can also be used to narrow the uncertainty factor knowing
accurate uncertainty bounds of experimental data
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