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MURI concept to identify surrogate fuel components.

n-alkyl benzene oxidation.

Flow reactor oxidation of 1st/2nd generation surrogates vs POSF 
4658.

1st generation surrogate kinetic model performance, future 
modeling direction.

Cycloalkanes in surrogate fuel formulations. 

•Can surrogate performance be improved?
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Identify critical fuel properties which manifest in important practical gas phase 
combustion chemistry behaviour of target fuel:  
•Adiabatic flame temperature 
•Local air fuel stoichiometry
•Enthalpy of combustion 
•Flame velocity 
•Fuel diffusive properties
•Sooting propensity  
•Global chemical kinetics/ 
Overall radical production

Surrogate mixture must emulate these parameters, but how?
Surrogate should represent distinct molecular class composition of real 

fuel reacting flux => n-alkyl, alkenyl and aromatic.

Ratio of hydrogen to carbon (H/C)

Molecular Weight (MW)

Derived Cetane Number (DCN),
macro ignition measure via Ignition Quality Tester

Threshold Sooting Index (TSI)
via smoke point measurement
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Must identify distinct chemical functionalities.
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Real fuels have many 
generic chemical 
functionalities

Much fewer distinct 
chemical functionalities 
after initial oxidation

Distinct chemical 
functionalities affect small 
species population which 
affect radical pool identity 
and population

Radical pool population 
controlling in combustion 
chemistry

+

+ CH3

MURI 1st and 2nd 

Generation Surrogates

C2H5+



C2H5+

5

n-propyl benzene oxidation and distinct functionality concept
n-propyl benzene (n-alkyl benzenes) exhibit(s) very weak 
C-C bond dissociation energies.
This allows modeling of high temperature global combustion 
properties to be simplified.
Construct model only considering oxidation of alkyl chain, 
divides high T and low T phenomena.

>1000K

Allowed in model => Good agreement against 
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Extinction Autoignition

Strain rates of extinction for counter flow 
diffusion flames at 1 atm, n-propyl benzene.

Shock tube Ignition delay times for n-propyl benzene, 
φ= 1.0  in air  at ~20 atm.

High Temperature

S.H. Won, S. Dooley, F.L.Dryer, Y. Ju Proc. Combust, Inst. in press 2010, 

H

H

H

H

H
H

H

86.5
74.8 88.5

101.5

98.5

n-propyl benzene bond 
dissociation energies, kcal mol-1

See Presentation of 
M. Oehlschlaeger, 
this symposium
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n-propyl benzene oxidation and distinct functionality concept
n-propyl benzene (n-alkyl benzenes) exhibit(s) very weak 
C-C bond dissociation energies.
This allows modeling of high temperature global combustion 
properties to be simplified.
Construct model only considering oxidation of alkyl chain, 
divides high T and low T phenomena.

Flow reactor oxidation data. Experiment (symbols) and model computations (Lines).
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leading to poor agreement at lower temperatures

Flow reactor Oxidation at 848K

H

H

H

H

H
H

H

86.5
74.8 88.5

101.5

98.5

n-propyl benzene bond 
dissociation energies, kcal mol-1

Low Temperature

<950K

S.H. Won, S. Dooley, F.L. Dryer, Y. Ju Proc. Combust, Inst. in press 2010, 
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Mole Fraction DCN H/C MW / g mol-1 TSI
Jet‐A POSF 4658 47.1 1.957 142.01 21.4

n-decane         iso-octane       Toluene
0.4267 0.3302 0.2431 47.1 2.01 120.7 14.1

Surrogate Formulation
Molecular weight may not be emulated with these components. 
(How important is that to combustion chemistry targets?)
POSF 4658 vs Surrogate, C10.17H19.91 vs C8.61H17.27

H/C and TSI may not be emulated by the same mixture.

n-decane/iso-octane/toluene allows for assessment of current kinetic 
modeling capabilities and all range of conditions for JP fuels.
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Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols), Inset;ΔT.
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•Fuel dilute conditions, 
0.3% carbon as fuel 
allows heat release to be 
regulated.
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Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols) and 1st

generation POSF-4658 surrogate (solid lines), Inset;ΔT.

•Fuel dilute conditions, 
0.3% carbon as fuel 
allows heat release to be 
regulated.

•0.3 % carbon and φ=1.0

•POSF 4658 vs Surrogate
294   vs 348 “ppm” fuel
4548 vs 4496  ppm O2

•Heat release rate is well 
emulated
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Flow reactor oxidation data for conditions of 
12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for 
POSF 4658 and 1st generation POSF 4658 
surrogate. Inset;ΔT.
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 Fuel mass fraction, XY

Strain rates of extinction for counter 
flow diffusion flames at 1 atm, for 
POSF 4658 and 1st generation POSF 
4658 surrogate.

Ignition delay times, φ= 1.0  in air  at 
~20 atm for POSF 4658 and 1st

generation POSF 4658 surrogate.

Mole Fraction DCN H/C MW / g mol-1 TSI
Jet‐A POSF 4658 47.1 1.957 142.01 21.4

n-decane         iso-octane       Toluene
0.4267 0.3302 0.2431 47.1 2.01 120.7 14.1



2nd Generation Surrogate Formulation
Molecular weight may not be emulated with n-decane/iso-octane/toluene

and H/C and TSI may not be emulated simultaneously.
Must use larger alkane to adjust DCN and alkylated aromatics to adjust H/C 
independent of TSI, as TSI ∝ aromatic content.
More reactive aromatics may improve emulation of end of NTC region.
=> n-dodecane/iso-octane/ propyl benzene / 1,3,5 trimethyl benzene
Can match all combustion property constraints.
Parameterise DCN as before, 35 mixtures for 4 components versus 14 for 3 
components.
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•Fuel dilute conditions, 
0.3% carbon as fuel allows heat 
release to be regulated.

•0.3 % carbon and φ=1.0

•POSF 4658 vs 2nd gen Surrogate
294   vs 300 “ppm” fuel
4548 vs 4500  ppm O2
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Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols), 1st

generation surrogate (solid lines), Inset;ΔT. 
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Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols), 2nd

generation surrogate (solid lines), Inset;ΔT. RHS  1st generation surrogate versus 2nd generation surrogate.
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Flow reactor oxidation data for conditions 
of 12.5 atm, 0.3% carbon, φ= 1.0 and t 
=1.8s, for POSF 4658, 1st generation POSF 
4658 and 2nd generation POSF 4658 
surrogate.

Strain rates of extinction for 
counter flow diffusion flames at 1 
atm, for POSF 4658, 1st generation 
POSF 4658 surrogate and 2nd

generation POSF 4658.

Ignition delay times, φ= 1.0  in air  
at ~20 atm for POSF 4658, 1st

generation POSF 4658 surrogate 
and 2nd generation POSF 4658.

.



n-decane/iso-octane/toluene detailed kinetic model.
n-decane => Westbrook et al. (LLNL) 2008. => Overall good 
iso-octane => Mehl et al. (LLNL revision of Curran et al.) 2010. =>Overall good 
Toluene => Princeton, (Metcalfe, Dooley and Dryer) 2010.=> Extensive revision

Common C0-C4 assembled and tested by Princeton. 
H2/O2 from Li et al. and C1 chemistry of  Zhao et al. to CH3+CH3(+M)=C2H6(+M). 
C2 to C4 of Healy et al.
Laskin et al. for higher alkenyl type species.

Do not consider “cross reactions”(!), 1600/6600 species/reactions.
Transport from literature review => aromatics, oxygenates, alkyl/alkenyls.

J. Li, Z. Zhao, A. Kazakov, M. Chaos,  F.L. Dryer, J.J. Scire Jr.,  Int. J. Chem. Kinet. 39 (2007) 109-136.
Z. Zhao, M. Chaos, A. Kazakov, F.L. Dryer, Int. J. Chem. Kinet. 10 (2008) 1-18. 
D. Healy, H.J. Curran, J.M. Simmie, et al.Combust. Flame  155 (2008) 441-448.
A. Laskin, H. Wang, C.K. Law, Int. J. Chem. Kinet. 32 (2000) 589-614.

F.M. Mourits, F.H.A. Rummens, Can. J. Chem. 55  (1977)  3007-3020.
H. Wang, M. Frenklach, Combust. Flame 96 (1994) 163-170.

C.K. Westbrook, W.J. Pitz, O. Herbinet, H.J. Curran, E.J. Silke, Combust. Flame, 156 (2009) 181-199.
Marco Mehl, Personal communication Nov 2009.
H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 129 (2002) 253–280.
W.K. Metcalfe, S. Dooley, Dryer F.L, in preparation 2010.
R. Bounaceur, I. Da Costa, R. Fournet, F. Billaud, F. Battin-Leclerc, Int J. Chem. Kin. 37 (2005) 25-49.

available soon
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12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for 
POSF-4658, 1st generation POSF-4658 
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Strain rates of extinction for counter 
flow diffusion flames at 1 atm, POSF-
4658, 1st generation POSF-4658 
surrogate and 1st generation POSF-
4658 surrogate kinetic model 
simulation.

Ignition delay times, φ= 1.0  in air  at 
~20 atm for POSF-4658, 1st generation 
POSF-4658 surrogate and 1st

generation POSF-4658 surrogate 
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Flow reactor oxidation data for 1st Generation surrogate.

• Model shows that n-decane is 
principally active in radical 
generation=> exclusively  so at 
lowest temperatures.

•Excellent emulation of POSF 4658 
at low Ts indicates quantity of n-
alkyl fragments have been approx. 
correctly prescribed in surrogate.

•Aromatic/iso-alkanes can not 
produce radicals  as competitively, 
slowing overall reaction.

•iso-octane/toluene start to 
contribute to radical generation 
above 800K and 900K respectively.
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Analysis indicates n-alkane oxidation of huge importance.
Current models have room for improvement.
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Analysis indicates n-alkane oxidation of huge importance.
Current models have room for improvement.

1-olefin species 
Profiles



Must identify distinct chemical functionalities.
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Real fuels have many 
generic chemical 
functionalities

Much fewer distinct 
chemical functionalities 
after initial oxidation

Distinct chemical 
functionalities affect small 
species population which 
affect radical pool identity 
and population

Radical pool population 
controlling in combustion 
chemistry

+

+ CH3

MURI 1st and 2nd 

Generation Surrogates

C2H5+



flow reactor and shock tube oxidation of 1st generation surrogate versus
1st generation surrogate + methyl cyclohexane. Model computations (lines), 

experiments (symbols).
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1) E.J. Silke, W.J. Pitz, C.K. Westbrook, J. Phys. Chem. A 111 (2007) 3761-3775.
2) W.J. Pitz, C.V. Naik, T.N. Mhaolduin, C.K. Westbrook, H.J. Curran, J.P. Orme, J.M. Simmie, 
Proc. Combust. Inst. 31 (2007) 267-275.
3) S.Dooley, S. H. Won,  M. Chaos, J.Heyne, Y. Ju F.L. Dryer, K. Kumar, C.-J. Sung, H. Wang,
M.Oehlschlaeger, R. J. Santoro, T. A. Litzinger, Combust. Flame in press 2010.

Formulate 2 additional surrogates 
containing cycloalkanes: cyclohexane
and methyl cyclohexane.

Incorporate LLNL cyclohexane1 and 
methyl cyclohexane2 chemistries into 
Jet-A model3, is cylcoalkyl
functionality having a significant 
effect?

Model results say no.

Model!



Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for 
POSF-4658 (symbols), 1st generation surrogate (light lines), and

1st generation surrogate + methyl cyclohexane (solid lines). Inset;ΔT.

What does experiment say?
Low temperature (<800K) 

behaviour is almost identical to 1st

Generation surrogate.
Observe a shift of approx. 25-30K 

to cooler temperature in               
“hot ignition” condition.

How significant is this to the 
engine design scenario?
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Surrogate formulation strategy is promising, tested surrogates closely 
emulate the chemical kinetic related behavior of real life Jet-A POSF 4658.
Emulation quality improves with a richer chemical structural palette, 
cycloalkanes, weakly isomerised alkanes?
=> Is it worth incorporating these given the kinetic modeling price to be paid?

To what level must constraining parameter be matched, likely dependent 
on condition of study and fuel? 
One surrogate one fuel? Intermediate species? 2-stage ignition?
Kinetic modeling for n-decane/iso-octane/toluene is qualitatively accurate 
but not precise, promising “a priori” agreement. 
More detailed and quantitative understanding of n-alkyl fragment 
oxidation required to improve real fuel oxidation models.
Paper is published in Combust. Flame, on line now.
S. Dooley et al. Combust. Flame. in press 2010 doi:10.1016/j.combustflame.2010.07.001
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