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OJB Extinction Limits Mimic “Idealized” Scramjet Flameholding
Experimental Approach; and Extinction Data for C, to C, HCs
Determination of Gaseous Surrogate HC Fuel for HIFIRE
Effects of O, (and NO) Concentration on HC Extinction

Results from Convergent-Nozzles and Straight-Tube OJBs;
Transformation of Global Strain Rates; and Comparisons.

Summary Extinction of Non-Premixed, Undiluted-HCs vs. Air;
7 C,to C, Gaseous HCs, & 11 Vaporized HCs up to n-C,,H,,.



Use of OJB Extinction Limits to Mimic “ldealized” Scramjet Flame-
Holding Limits, and Define a Simple Gaseous Surrogate Fuel

 HIFIRE Flight 2
— Hypersonic International Flight Research Experiment. Participants
are: NASA Langley; U.S. Air Force AFRL; ATK Alliant Tech Systems;
and the Australian Defence Science and Tech Org., DSTO.

— Flight Goal: To demonstrate dual-mode to scramjet performance
transition, using a gaseous hydrocarbon surrogate fuel that mimics
Ignition and flame holding properties of a catalytically-cracked JP-7
“like” kerosene.



Experimental Approach
and

Extinction Data for Non-Premixed
C,to C, HCs vs. Air



Extinction / Flameholding Performance Gauges

#* Opposed Jet Burner Extinction Limits:

* Flame Strength [FS = cross-section-average U_.  (MF) at nozzle exit].

air
* FSs measure aerodynamically-strained, non-premixed combustion

limits at T's relevant to flameholding in simple systems.

#* Applied Stress Rate (ASR) Extinction Limits (after Spalding, Dixon-Lewis)
* ASRs at extinction represent jet-diameter-normalized FSs for

convergent nozzles (plug inflow) and uniform tubes (parabolic).

* ASR limits define reproducible global scales for fuel-air systems
(primarily influenced by chemical kinetics and diffusion).

* Limits enable a relative assessment of incipient flameholding
(flameout) in scramjet (e.g., in subsonic recirculation zone).

* ASRs allow validation of kinetics & multi-component diffusion.
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Applied Stress Rate for Tube-OJBs "at 300 K Airside
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Effect of OJB Tube Diameter on Applied Stress Rate at
Extinction, for Various Gaseous Hydrocarbon vs Air CFDFs
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Applied Stress Rate at Extinction for Methane + Ethylene
Fuel Mix vs Air Counterflow Diffusion Flames,
7.56 mm Tube-0OJB, 1 atm
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Applied Stress Rate at Extinction for Ethane + Ethylene
Fuel Mix vs Air Counterflow Diffusion Flames,
7.56 mm Tube-0OJB, 1 atm
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Applied Stress Rate at Extinction for Methane + Ethane
Fuel Mix vs Air Counterflow Diffusion Flames,
7.56 mm Tube-0OJB, 1 atm
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Uair,soOK,1atm /D t, 1/s

Applied Stress Rate at Extinction for Methane + Propylene
Fuel Mix vs Air Counterflow Diffusion Flames,
7.56 mm Tube-0OJB, 1 atm
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Definition of HIFIRE Gaseous Surrogate Fuel

 (Gaseous Binary Surrogate that Mimics Cracked JP-7 “like” Fuel

— Determine binary-mixture Flame Strength (FS) for a Counter Flow
Diffusion Flame (CFDF), that equals FS for a ternary baseline
surrogate mixture proposed by Colket & Spadaccini (JPP, 2001).

— Ternary baseline surrogate (above) was based on extensive shock tube
ignition (and cracking) data for methane, ethylene, and n-heptane
(30/60/10 mole %), that mimics a cracked (reformed) JP-7 “like” fuel.

— Gaseous 64/36 ethylene / methane surrogate mixture was derived from
detailed OJB data (documented in AIAA 2007-5664; JANNAF-847, May,
2008; and JANNAF-752, Dec. 2009).
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Applied Stress Rate at Extinction for 600 * K Methane + n-Heptane Fuel
Mix vs Air Counterflow Diffusion Flames, 7.56 mm Tube-0OJB, 1 atm
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Applied Stress Rate at Extinction of Gaseous n-Heptane + Ethylene Fuel
Mix vs Air Counter Flow Diffusion Flames, 7.56 mm Tube-OJB, 1 atm
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Applied Stress Rate at Extinction of 600 K Methane + Ethylene +10.8
mole % gaseous n-Heptane Fuel vs Air Counter Flow Diffusion Flames,

Uair,SOOK.1atm D¢ ,1/s

250

200

150

1 00 B M1 98.156
93 1/s for Pure JP-7 M2 35.365

50

7.56 mm Tube-0OJB, 1 atm

872

I Baseline Simulant, based on Shock Tube Ig!éiition
- Studies by Colket & Spadaccini (JPP, 200'}),

for Endothermically Cracked JP-like Fuel

160 1

Y = MO + M1*x + M2*x 2
MO 88.147

R 0.99957

ATRRT
1

(=

0.2 0.4 0.6 0.8
X(C,H,), Mole Fraction Ethylene in Fuel Mix

18



Uair,soOK,1atm /D t, 1/s

Applied Stress Rate at Extinction for 600 K Methane + Ethylene
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Effects of O, (and NO) Concentration on Extinction Limits -
- for “ldealized” HIFIRE Flameholding

#* Motivation:

* Test air contamination, from production of nitric oxide with
consumption of O, in Arc-Jet-Heater Facility, occurs in tests of
HIFIRE scramjet combustors.

* Flight testing of the HIFIRE vehicle may experience an offset in
robust flameholding, mode transition, and/or flameout, due to the
“final” switch from facility contaminated air to clean air.

* Development of advanced HC-fueled scramjets will require greatly
Improved chemical kinetics for accurate simulations of flameholding
during flight in clean and facility-contaminated air.

#* Related Work:

* Compared with our earlier OJB extinction results (JANNAF-847,
May, 2008), 1-D simulations (UVa) of ethylene vs. air flame
extinction were high by ~ 45 %, based on USC (2007) kinetics.
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Effects of N, Dilution of Air on Extinction of HC vs. Air CFDFs,

ASR at Extinction, 1/s @300K, 1atm
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Effects of N , Dilution of Air on Extinction of HC vs. Air CFDFs,

using 9.3 mm Tube-OJB Systems at 1 atm; and Comparison
with Relative Maximum Flame Velocity [NACA Rpt. 1300, (1959)]
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Effects of Mole % O , in Air on Extinction of HC vs. Air CFDFs, using
9.3 mm (and 7.56 mm for C ,Hg) Tube-OJB System at 1 atm
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Sensitivity of ASR at Extinction due to Decreased O , in Air, for Various

HCs vs. N, —Contaminated Air, using 9.3 mm Tube-OJB System at 1 atm
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Effects of NO Dilution of Air on Extinction of HCs vs. Air CFDFs,
using 9.3 mm Tube-0JB System at 1 atm
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Effects of N, Dilution of Air on Extinction of HC vs. Air CFDFs,

ASR at Extinction, 1/s @300K, 1atm
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Fractional Effects on ASR at Extinction, for HC vs. Arc-Jet-Contaminated
Air with 3 mole % NO: For NO Enhancement, Oxygen Depletion,
and Net Effects on ASR, based on 9.3 mm Tube OJB at 1 atm.
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Fractional Effects on ASR at Extinction, for Ethylene and 64/36 C ,H,/CH ,

Surrogate Fuels vs. Arc-Jet-Contaminated Air: For "NO Enhancement”,
"Oxygen Depletion™ and "Net” Effects, from 9.3 mm Tube OJB at 1 atm.
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Re: Air Contamination Effects on “ldeal” Flameholding

Very significant “oxygen-deficiency” weakening effects on flame extinction for all
seven HCs tested. Effects are ~ 2.5 times that for H,.

“Nitric oxide (NO) enhancement” effects on flame extinction are small (to ~ 4 %)
for methane, ethylene, the “64/36” mix, and probably most simple gaseous HCs.

Because “oxygen-deficiency” weakening effects grow large (and ~ 2.5 times that
for H,), renewed scrutiny is needed for tests that alter local O, (e.g., vitiated air
with O, make-up, and arc-heaters that consume O, to produce NO).

The deduced 26 % reduction in FS for the “64/36” surrogate fuel vs. Arc-Jet-
contaminated air with 3 % NO suggests that “clean air” flameholding processes
may be strengthened during flight.
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(1) Extinction Limits for 7 Gaseous HCs, from
Convergent-Nozzle and Uniform-Tube OJBs;

(2) Transformation of Global Strain Rates to
“Absolute” Input Axial Strain Rate Scales;

(3) Comparisons with Published Results.
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Extinction-Limit "ldealized Flameholding Scale,” from 7.2 mm Convergent
Nozzle- and 7.5 mm S$traight Tube-OJBs, for gaseous HCs vs Air CFDFs,
using Best Linear Fit WITH INTERCEPT
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Extinction-Limit "ldealized Flameholding Scale,” from 7.2 mm Convergent
Nozzle- and 7.5 mm S$traight Tube-OJBs, for gaseous HCs vs Air CFDFs,
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Comparison of Rolon's LDA-Measured Strain Rates for
Variable Separation of 25 mm Contoured Nozzles, Air
vs Air. Rolon et. al, Exp. in Fluids, 11, 313-324 (1991)
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2-D Numerical Strain Rate Ratios for Cold Opposed Jet Air Flows, using
3 mm OJB’s, 6 mm spacing, and both Plug and Parabolic Inflow Profiles

[2-D Results from Dissertation by Kyu C. Hwang, Old Dominion University, May 2003]
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Comparison of Experimental and Numerical Strain-Induced Extinction
Limits for Fuel vs Air Counterflow Diffusion Flames at 1 atm,
Using Best Estimates of Airside Axial Strain Rate
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Effects of N, Dilution of Air on Extinction of HC vs. Air CFDFs,

ASR at Extinction, 1/s @300K, 1atm
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Usirso / D ¢ » ASR, 1/s

Effect of OJB Tube Diameter on Applied Stress Rate at
Extinction, for Various Gaseous Hydrocarbon vs Air CFDFs
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Extinction-Limit "ldealized Flameholding Scale,” from 7.2 mm Convergent
Nozzle- and 7.5 mm S$traight Tube-OJBs, for gaseous HCs vs Air CFDFs,
using Best Linear Fit WITH INTERCEPT
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Transformation of Extinction ASR’s from Tube-OJB to Best
Estimates of Airside Axial Strain Rate for Convergent Nozzle-OJB

(1) Use of 2.3 factor (= 2 * 1.15) corrects nozzle-based ASR,, data, and

(2) Use of best empirical LS fit of ASR,, vs. ASR, for extensive
extinction data on 7 gaseous HCs,

ASR =-37.12 + 2.533 * ASR, ,
allows the use of 2.3*(-37.12 + 2.533 * ASR,) to represent Tube-OJB

ASR, data on an equivalent 2.3 * ASR,, scale.
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Comparison of Experimental and Numerical Strain-Induced Extinction
Limits for Fuel vs. Air Counterflow Diffusion Flames at 1 atm,
Using Best Estimates of (local) Airside Axial Strain Rate
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Conclusions Re: Extinction Limits for C,H, and Simple HCs

#* The new ASR extinction limits for 7 gaseous HCs agree exceptionally
well with the author’s previous (2008) results derived from a slightly
smaller Tube-OJB.

#* (1) New independent global extinction, and refined PIV axial Strain Rate
measurements at UVa for C,H, and CH, OJB flames; and (2) Refined

numerical simulations at UVa for C,H, and CH, extinctions, using a
revised 2009 chemical kinetics model (USC), agree quite closely with
present experimental results on a deduced “absolute” axial SR scale
(both are ~ 12 % higher for C,H,).

#* The present agreement helps justify development of a reduced kinetics
model (with ~ 30 species) that will permit detailed numerical simulations
of flameholding in HIFIRE-like scramjet combustor designs.
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Extinction of Non-Premixed, Undiluted Vaporized-HCs vs Air;

and
Consolidation of Results from 7 Simple Gaseous HCs

with Results from 11 Vaporized HCs, up to Tetradecane.
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Extinction of N, -diluted n-Heptane and n-Dodecane, and JP-7 vs

Air CFDF's, using 7.5 mm Tube-0OJB with Batch Vaporizer,
and Comparison with Gap-Corrected UCSD Matrix Burner Data
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ASR at Extinction for Vaporized n-Heptane + n-Dodecane
Mixtures vs Air Counterflow DFs, using “Minimally Heated™
Vaporizer System to feed 7.56 mm Tube-OJB, 1 atm
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OJB-Extinction-Limit “ldealized Flameholding Scale™ from Convergent-Nozzle-
and Tube-0JBs, for: JP-10, n-Dodecane, JP-7, n-Heptane; and Methane, Butane,
Propane, Propylene, Ethane, 36% CH ,/64% C ,H,, Ethylene, and H, vs Air CFDFs
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OJB-Extinction-Limit “ldealized Flameholding Scale™ from Convergent-Nozzle-
and Tube-0JBs, for: JP-10, n-Dodecane, JP-7, n-Heptane; and Methane, Butane,
Propane, Propylene, Ethane, 36% CH ,/64% C ,H,, Ethylene, and H, vs Air CFDFs
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Applied Stress Rate (Extinction) for Gaseous & Vaporized-Liquid Hydrocarbons vs

Air, using "Minimally-Heated™ 10.6 L System to Feed 7.56 mm tube-OJB @ 1 atm
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Best Estimate of Airside Axial Strain Rate for Extinction of Gaseous & Vaporized-
Liquid Hydrocarbons vs. Air, using “Minimally-Heated™ 10.6 L System
to Feed 7.56 mm Tube-OJB @ 1 atm
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Conclusions Re: Extinction of Gaseous and Vaporized HCs

Consistent scaling of ASR,, and ASR; results has been
obtained.

The ASR; results appear basically consistent with
expected trends as a function of molecular structure.

The present ASR, extinction results on gaseous and
vaporized HCs are now transformed as best empirical
estimates of the (cool) airside axial strain rate at
extinction for the (non-premixed) HC vs. air flames.
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