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Background/Objectives

Reduced-order kinetic models for hypersonic reacting flow simulations
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Background/Objectives (cont.)

Skeletal and Reduced Reaction Models:

« PCAS based method for ethylene-air:
« 38 species skeletal model from USC Mech II* (2009)
e covers ignition, propagation, and extinction
» Esposito and Chelliah. Combustion and Flame 158 (2011)

 (QSSA for reduced reaction model for ethylene-air:
o 20-step reduced reaction model
« Zambon and Chelliah, Combust. and Flame (2007)

 The skeletal and reduced models developed have been shared with Center
members, NASA, AEDC, AFRL, GE, and others

Accuracy of detailed kinetic model in prediction extinction:
Focus of this presentation!

The Hypersonic Propulsion Center will clearly
benefit from the work done by this group!!!
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Boundary Conditions

« What is the ideal nozzle separation distance?
« What is the role of boundary conditions (BC)?
* In experiments, BC’s depends on L/D (separation distance/diameter)!
* In quasi one-dimension numerical simulations — D has no role!
Free floating flow field (Lge < L)
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Boundary Conditions

What is the ideal nozzle separation distance?
What is the role of boundary conditions (BC)?
In experiments, BC’'s depends on L/D (separation distance/diameter)!
In quasi one-dimension numerical simulations — D has no role!
Free floating flow field (Lgr > L)
Velocity [cm/s]
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— _— plane

1
1 -
1 _—
— _"-r
/

N

&

10— 20— €0~ ¥

':.‘______

[wo] aoueysiq [elpey
L0 0

0

},

€0
) e Rl

o

National Center for Hypersonic Combined Cycle Propulsion 7 VIntsdl




Boundary Conditions

« What is the ideal nozzle separation distance?

« What is the role of boundary conditions (BC)?

* In experiments, BC’s depends on L/D (separation distance/diameter)!
* In quasi one-dimension numerical simulations — D has no role!

Pressure contours from PIV data . rreefloatingflowfield (Lee>L) |
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Few Definitions

e Extinction strain rate (s1) . e —

dvza'dz at oxidizer

« Global extinction strain rate Ry vounaary 05 - - -Quasi 1D Ugeos™

Q Experimental

(with momenta balanced),
Seshadri and Williams, 1978

. _ 4‘uair
global L

Velocitv [cm/

e Local extinction strain rate

_ d
Aiocal = (E

* Local extinction strain rate

however is influenced by inflow Chelliah etal. (1990), Sarnacki et
velocity gradient  du_ 5 al. (2011), and others
dx

e« Scalar dissipation rate (s1)

 Completely independent of the outer
flow description!
« Can we measure it accurately??? 7

) ;\{I\TRHITX

A dZ
Xst— 2_ |2

JVIRGINIA ¢7

National Center for Hypersonic Combined Cycle Propulsion




Measurement Uncertainties

« Velocity: uncertainty of local velocity @ Alr + Particles

measurement (typically1-3%) --- slip, LV/PIV,
standard error of the sample mean (SEM)

o Strain rate: uncertainty of the

estimated local strain rate --- (i) ﬁ =
regression fit and (ii) repetition

- PIV -I
+ Monte Carlo Error Cloud

—
ey
o

- Used a MC approach based
on 1000 normally distributed
random points

- Regression and repeatability
had nearly equal contribution
to the total uncertainty
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Results - Experimental

Global vs. local extinction strain rate as a function of L/D

Ethylene-air Non-premixed Flames

+ (aglobaI—LV )near—ext

o (alocal )near—ext

---(a )

local-pc “ext

(a

e M ocal )near—ext

O (alm1I )mt - Pellett et al. (2007)

- Linear Regression

ry
(2]
o
o

—
n
~—~
-
el
[
et
©
@
=
©
S
firr)
wn

ey
£~
[=]
o

1.2 1.4 1.6

Normalized Separation, L/D
L/D~1.0(L<L¢) L/D~1.8(L=Lcp)
U=290s" U=0st

National Center for Hypersonic Combined Cycle Propulsion

ENGINEERING e



Results - Experimental

 Global vs. local extinction strain rate as a function of L/D
Methane-air Non-premixed Flames
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Results — Numerical Predictions

e Quasi 1D formulation (Kee et al. (1988), Smooke et al. (1990))
* For L<Lg must use U#0 bc'’s; for L=L U=0is fine (plug flow bc);
for L>L quasi 1D formulation cannot be used!
« Can one find L without LDV/PIV? Probably not!
« U from experiments for a range of L:
= Predicted extinction strain rate has an uncertainty based measured U!
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Results — Numerical Predictions

e Quasi 1D formulation (Kee et al. (1988), Smooke et al. (1990))
e For L<Lg;, must use Uz 0 bc’s; for L=L.- use U=0 is fine; for L>L quasi
1D formulation cannot be used!
e How do you find L???
« Use U from experiments for arange of L
= Predicted extinction strain rate has an uncertainty based measured U!

1820 s iD=159 U, 0%

12mm (LD=152) U 0:4?3"
I I i 8mm (L/D=1.01) U_=0s”
Methane-air extinction 1800, B~ o
— - 8mm (LD=1.01) U, =112¢
14mm (LD=1.76) U 0:05"

curves predicted using
USC Mech lI*(JetSurf
1.0)

~-

(ahml_p':llml - Present Exp.

—
=~
@
o

Y
~d
f -
o

¢
e
@
L=
3
apoed
o
)
]
=8
£
(1]
-
=

380’

380 400
Local Strain Rate (5'1)

) IP{I VERSITY

JVIRGINIA ¢7

National Center for Hypersonic Combined Cycle Propulsion




Summary of Experiments and Predictions

Fuel-air Local Extinction Model Predict. (s?) Scalar Dissipation
system Strain Rate (s1) with finite U’s Rate, y (™)

Methane 380+21 456-470
Ethylene 1284+48 1223-1232

Propylene 617+34 606-624

n-Butane 499+38 544-550

o Sheen et al. (2009) USC Mechll* model, optimized for ethylene works well
for ethylene-air non-premixed extinction limit, but not so for methane-air
extinction!

 Full details can be found in Sarnacki, Esposito, Krauss, and Chelliah,
to appear in Combust. and Flame.

The story doesn’t end here!!!
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What About Nozzle Diameter?

* Previous data were using D=7.9mm set of nozzles with an area ratio of 24
« Experiments were repeated with D=14.5mm set of nozzles for methane
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~30s-1 different!!!

 Note: D is not an input in quasi one-dim. model; can only prescribe L and U!

e Need to repeat above experiments with identical area ratio nozzles?
e Full 2D simulations?

--- happy to provide all the experimental data!
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What About Transport Coefficient
Uncertainties?

 The best system to address this issue is via hydrogen flames
« Undiluted hydrogen-air has a very high extinction strain rate (~8000 s1)
» Used diluted-hydrogen in air AND diluted-hydrogen in diluted-air

— BTLB
HTLB
—=JTLB

16% hydrogen ‘
Vs air

Three kinetic models:
- Hong et al. (2011), Burke et al. (2011), JetSurf2.0* (2011)
 Two transport: Tranlib and modified Tranlib fits from Middha et al. (2002)
* Detailed paper will be presented at ESS Meeting at Hartford, Oct. 2011

National Center for Hypersonic Combined Cycle Propulsion
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Comparison of Sensitivities

» Global sensitivity analysis of kinetic and transport coefficient
uncertainties in predicting diluted-hydrogen and air flame extinction

« Sensitivity coefficients from MC
simulation of top 1% of binary
diffusion coeff. (Using TeraGrid)

Diffusion Experimental
0.0157 model uncertainty
uncertaint

distribution

Chemical

« Sensitivity coefficients from MC Kinetic model |

simulation of top 1% CK parameters.

Reaction

(R1) HOs+H + 20H

(R2) OH+H> + H+H-0

(R3) O+Hs <+ H+OH

(R4) H+0O2 <+ O+OH Diluted hydrogen and air extinction strain

(R5) OH+HO; <+ Hy0+0, A -
(R6) Ht OH-M & HyO-M rate distribution due to model uncertainties
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How about Ignition Delay Predictions?

* In hypersonic flow fields, accurate prediction of ignition delay is critical!.
» Ignition delay predictions using several hydrogen kinetic models:

¢ Pang et al (2009) === Burke et al (2011
== Burke et al (2011) Hong at al (2011)
Hong at al (2011) = Jetsurf2.0*
 ===Sheen et al (2009) '
= Jetsurf2.0*
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Comparison with experimental ignition
delay data of H2/air from Pang et al.
(2009) at p=3.5atm, $=1.0, in Ar
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Comparison of Hydrogen Models

Mational Institute of Standards and Technology -;1 %

g, g
AN IAE g El= Y, 3 L =riei= Vleir) p - ASE 5
NI CHEMICAL KINEJIGSIVIGDEINDATABASE g‘*’ E“
OVERVIEW MODELS REACTIONS SPECIES BIBLIDGRAPHY HELP

Harsha Chelliah My Bibliography | My Account | Log Cut

Reaction Search Results »

Results 1 - 24 of 24 Search In:  AllModels PreExp units: muale Energy units: cal Sort by: Rank

View Reaction Class [Sites] log(Ratio) A b E Datatype Reference Model Kinetics DB

O-H+H [0-0] ; 1.02E+13 0. 2011-HOx-Hong

0-0 [OH/OH] . 8.59E+14 0. 2011-HOx-Hong

O-H+H [0-0] : 1.21E+07 2. 2011-HOx-Hong

O-H+0 [O-0f 0] : 8 43E+11 : 2011-HOx-Hong

0 .0-H+H ; J.66E+06 2. 2011-HOx-Hong

0.0-H (-) . 5.59E+13 0. 2011-HOx-Hong

1.63E+13 0. 2011-HOw-Hong  Fwd Rev
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Conclusions

Effects of inflow boundary conditions, seed particles, measurement
uncertainties on non-premixed flame extinction limits were carefully
analyzed, for a range of fuels (H2, CH4, C2H4, C3H6, n-C4H10)

Local extinction strain rate was found to be nearly invariant with the
nozzle separation distance (L), for two sets of nozzles used

Axial Velocity gradient at the nozzle exit was shown to be a function of
nozzle separation distance, nozzle diameter, (or nozzle shape?), and fuels
used.

In quasi one-dimensional simulations, implementation of experimentally
measured boundary conditions is critical for L<L .

Uncertainty analysis of both kinetics and transport parameters, based
on Morris Method and full Monte Carlo Methods are continuing using the
TeraGrid and will provide guidance to focus on a subset of parameters for
future investigations
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