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Identify critical fuel property targets that manifest in important practical
MURI Strategy for Modeling a Specific Jet Fuel
Identify critical fuel property targets that manifest in important practical 
combustion behavior of each real fuel: 

Adiabatic flame temperature 
Local air fuel stoichiometryLocal air fuel stoichiometry 
Enthalpy of combustion 
Flame velocity 
Overall active radical production

Ratio of Hydrogen to Carbon (H/C)

Overall active radical production
Premixed sooting 
Non-premixed sooting 
F l diff i t t ti

Threshold Soot Index (TSI), 
By standardizing smoke point measurement

( )

f f

Fuel diffusive transport properties 
Autoignition/global kinetics

Average Molecular Weight (MWavg)
Derived Cetane Number (DCN),
Correlative for macro ignition measure

All property target values for real fuel and surrogate components determined experimentally.
Surrogate fuel components and mixture do not have to necessarily include all of the molecular 

classes found in the real fuel of interest.
The components and their mixture must reasonably replicate the interaction and composition p y p p

of  distinct chemical functionalities manifested in the real fuel!
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Test MURI concept by replicating property targets for Jet A POSF 4658Test MURI concept by replicating property targets for Jet A POSF 4658

1st Generation Formulation - n-C10,/iso-C8 /toluene 
 Allow for analyses using more well-developed kinetic model components.y g p p
 Three component formulation can match H/C and DCN, but not TSI as well, and 

can never emulate MWavg of the fuel.
2nd Generation Formulation – n-C12/iso-C8/n-PB/1,3,5 TmB
 C li ll f l ll j f l Can replicate all property targets of nearly all jet fuels.
 Larger MW components, multiple aromatics (same MW) facilitate property 

matching. 
 Significant needs in database/model development and validation, so first: Significant needs in database/model development and validation, so first:

Experimentally compare Jet A POSF 4658 and its surrogates in a wide range of 
venues (VPFR reactivity, ST/RCM ignition delay, diffusive strained ignition, 
premixed burning rate and strained extinction, SPST speciation, sooting),   and 
conditions (dilute fuel/O2, fuel/air, range of pressures and temperatures).

4

First reported by UCONN, UIC teams, this review



1200 1000 800 600
 Temperature / K

1st and 2nd Gen Comparisons with Jet A POSF 4658

300

400
 POSF 4658 
 1st  Gen. POSF 4658 Surrogate
 2nd Gen. POSF 4658 Surrogate

 

at
e,

 a
E 

/ s
-1

on
 x

10
3  / 

pp
m

4

5

10000

100000
  ST   RCM

   POSF 4658
   1st Gen. POSF 4658 Surrogate      
   2nd Gen. POSF 4658 Surrogate

m
e,

 
 / 
s

1200 1000 800 600

100

200

E
xt

in
ct

io
n 

st
ra

in
 ra             O2    CO  CO2  H2O             

POSF 4658                    

1st   Gen. Surrogate                  

2nd  Gen. Surrogate      

                          
                                       
                         

S
pe

ci
es

 c
on

ce
nt

ra
ti

1

2

3

 

100

1000

Ig
ni

tio
n 

de
la

y 
tim

1.0 1.5 2.0 2.5

 [Fuel] x Hc x (MWfuel/ MWnitrogen)
-1/2 / cal cm-3

500 600 700 800 900 1000

                                                         S

Temperature / K
0.8 1.0 1.2 1.4 1.6

40

1000K / T

Flow reactor oxidation data for conditions
of 12.5 atm, φ= 1.0 and t =1.8s, for Jet A
POSF 4658, 1st gen and 2nd gen POSF

Ignition delay times, φ= 1.0 in air at
~20 atm for Jet A POSF 4658, 1st gen
and 2nd gen POSF 4658 surrogate

Strain rates of extinction for counter flow
diffusion flames at 1 atm, for 1st and 2nd
generation POSF 4658 surrogate fuels v, g g

4658 surrogate mixtures. All experiments
at 0.3% mole carbon content.

g g
mixtures.

1st and 2nd generation surrogates produce nearly identical emulations of the 
real fuel behavior with significantly different initial surrogate components.
C i t t ll diff i l f l b h i d t b h i i

generation POSF 4658 surrogate fuels v.
*Radical Index for each fuel

Consistent, small differences in real fuel behavior and surrogate behavior in 
the hot ignition regime (surrogates very similar).
Replicating molecular weight important to diffusive extinction comparisons.

*S H Won S Dooley F L Dryer Y Ju Combust Flame Accepted August 2011
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Single Pulse Shock Tube Speciation 
Oxidation Speciation of 0.0808/0.158/0.1187 mole %
mixtures of C/H/O2 in argon at reaction times of 1.23-
3.53 ms. Jet-A POSF 4658 (18-29 atm, hollow
symbols) and 2nd generation POSF 4658 surrogate
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New Combustion Target Comparison
Premixed Laminar Flame Properties

Premixed laminar flame properties of Jet-A POSF 4658, 1st and 2nd gen POSF 4658
surrogate s at Tu = 400 K. (solid symbols) and 470 K (hollow symbols) in “Air”:
N2/(N2+O2) =0.86.
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Different distinct groups available in each molecular class in the real fuel can
contribute to the sums of all distinct chemical groups found in the composition.
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Paraffinic Kerosene Surrogates
SPK and HRJ Jet fuel compositions have no aromatics but will likely be mixed withSPK and HRJ Jet fuel compositions have no aromatics, but will likely be mixed with 

petroleum derived jet fuel or have synthetic aromatics added for compatibility with legacy 
engine systems.  S-8 POSF 4734 is such an SPK feedstock produced from natural gas.
Prior surrogate mixtures for S-8 have been constructed by others previously. 

Gokulakrishnan et al. (2007) AIAA 2007-5701
Naik et al., (2010), doi:10.1016/j.combustflame.2010.09.016.

Can a simple 2nd generation surrogate mixture (no mono-methyl/di-methyl  iso-alkanes) 
replicate the combustion behavior of S-8 (major amounts of methylated iso-alkanes)?replicate the combustion behavior of S-8 (major amounts of methylated iso-alkanes)?

Di-methyl alkane 
isomers

Cycloalkanes
Normal-alkanes

Mono-methyl alkane 
isomers

T. Edwards, D. Minus, W. Harrison,, 
E Corporan AIAA 2004 3885 2004

Exemplar generic molecular class composition of S-8

isomers

Select surrogates to represent expected chemical functionalities of fragments formed 
from S-8 combustion => n– & iso– alkyl and alkenyl for synthetic fuels.

E. Corporan, AIAA-2004-3885, 2004.

Identified components and ~ proportions for S-8 POSF 4734

No utility in matching TSI combustion property as it is very low for all saturated HC’s. 
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S-8 POSF 4734 vs S-8 Surrogate
Mole Fraction DCN H/C MW / g mol-1
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 Similar discrepancies for VPFR reactivity also noted in more complex case of Jet-A POSF 
4658, 1st & 2nd gen. POSF 4658 surrogates. 
 S-8 surrogate approximates kinetic and transport properties well; MWavg disparity is less 
important for MW > 120 g mol-1

S. Dooley, S.H. Won, S. Jahangirian, Y. Ju, F.L. Dryer, H. Wang, M.A.  
Oehlschlaeger , AIAA Aerospace Sciences Meeting, 2011 & 2012.

important for MWavg’s > 120 g mol .
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Weakly Branched Alkane Kinetic Models: 2-Methylheptane
Th t i t i lk t i t l d i d j t d di lThe most prominent iso-alkanes present in petroleum derived jet and diesel 

fuels contain one or two methyl branches.†
Major research gaps exist in modeling weakly branched iso-alkanes.†

2-Methylalkanes are less reactive under auto-ignition2-Methylalkanes are less reactive under auto-ignition 
conditions than n-alkanes of the same chain length. 
At low temperature and NTC regions, •RO2

isomerization reactions can be inihibited by where 
methyl groups are located. 
Sarathy et al. and co-workers† have recently developed  

and validated a detailed kinetic model.
The present collaboration‡ is nearing completion and

Structure and C-H bond dissociation 
energies (kcal mole-1) of 2-methylheptane.

The present collaboration is nearing completion and  
encompasses VPFR, shock tube, and RCM validations 
and further model refinements.
VPFR Reactivity data show: 

S b t ti l l t t ti it d d NTC b h i

† S. M. Sarathy; C. K. Westbrook; M. Mehl; W. J. Pitz; C. Togbe; P. Dagaut; H. Wang; M. A. 
Oehlschlaeger; U. Niemann; K. Seshadri; P. S. Veloo; C. Ji; F. N. Egolfopoulos; T. Lu, Combustion 
and Flame (2011). DOI:10.1016/j.combustflame.2011.05.007

Substantial low temperature reactivity and pronounced NTC behavior. 
 Iso-butene and propene are significant intermediates above hot ignition.

( ) j
‡ S. Jahangirian, D. Healy, S.M. Sarathy, S. Dooley, M. Mehl, W.J. Pitz, F.L. Dryer, H.J. Curran, C.K. 

Westbrook. To appear: ESS 2011, manuscript in preparation.
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Weakly Branched Alkanes: 2-Methylheptane 

16000

20000

24000
 CO   CO2
 O2   2-MH x 10
 H2O

on
 (p

pm
)

0.0 0.5 1.0 1.5
0

30

60

90

120

T
 (K

)

Time (s) 800

1000

1200

1400
 C2H4
 CH4
 C3H6 
 CH2O

on
 (p

pm
)

80

100

120
 (i-C4H8+1-C4H8) / 3
 C4H6 
 2-C4H8 (cis & trans)
 1-C5H10on

 (p
pm

)

0

4000

8000

12000

Sp
ec

ie
s 

m
ol

e 
fra

ct
io Time (s)

200

400

600

800  

Sp
ec

ie
s 

m
ol

e 
fra

ct
io

20

40

60

5 10

S
pe

ci
es

 m
ol

e 
fra

ct
io

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

Time (s)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

Time (s)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

Time (s)

Flow reactor oxidation of 2-methylheptane/O2/N2 at 8 atm and 840 K, time shift: 0.21 s.
Model: Sarathy et al. (2011)

Noticeable amounts of 2-methyl alkenes were identified under these conditions. 
The model predictions are satisfactory for most intermediate species, except sum of iso-

butene and 1-butene and some C3 oxygenates.
The model is under further refinement: larger fuel fragments, iso-butene, and C2 chemistry 

S M Sarath C K Westbrook M Mehl W J Pit C Togbe P Daga t H Wang M A Oehlschlaeger U Niemann K Seshadri P S

g g 2 y
predictions can benefit from further refinement.

Small fragment distinct chemical functionalities can likely be estimated with n-alkane, iso-
octane mixtures.

• S. M. Sarathy; C. K. Westbrook; M. Mehl; W. J. Pitz; C. Togbe; P. Dagaut; H. Wang; M. A. Oehlschlaeger; U. Niemann; K. Seshadri; P. S. 
Veloo; C. Ji; F. N. Egolfopoulos; T. Lu, Combust Flame.  Doi:10.1016/j.combustflame.2011.05.007
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This iso-alkane n-C7 and S-8 POSF 4734 real fuel all have very similar DCN’s and very low
Weakly Branched iso-Alkanes: a Trimethyl-isomer

This iso alkane, n C7, and S 8 POSF 4734 real fuel all have very similar DCN s , and very low 
TSI.  Here we compare VPFR reactivities for the Tri-methyl isomer and n-heptane
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Species time-history experiments trace ~45 species using GC/MS, ~20 species quantified so far.
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Weakly Branched iso-Alkanes: a Trimethyl-isomer
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Here we compare the reflected shock ignition delays and diffusive extinction 
strain rates for S-8 POSF 4734, S-8 Surrogate, and the tri-methyl isomer.
All three fuels have nearly identical DCN.
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flames at 1 atm for branched trimethyl isomer (gray 
filled circles), S-8 POSF 4734 (flack filled squares) & 
S-8 POSF surrogate (open circles). 

Low temperature ignition of trimethyl isomer are expected to be longer as, p g y p g
shown by shock tube results (but DCN’s of all three materials are very similar).

14



Reactivity Predictions for n-Alkanes: n-Decane
Normal-alkane fractions of real fuel are essential to determining radical pool generated
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Normal-alkane fractions of real fuel are essential to determining radical pool generated 
during fuel oxidation => significant differences exist among model predictions.
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Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ (2009). Combust. Flame 156: 181-199.
 Biet J, Hakka MH, Warth V, Glaude PA, Battin-Leclerc F (2008). Energy Fuels 22: 2258-2269.
 Ranzi E (Accessed December 2010): available at: http://www.chem.polimi.it/CRECKModeling/kinetic.html.
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n-Decane Temporal Speciation Predictions 
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Detailed temporal fuel speciation during initial fuel destruction significantly constrains

VPFR oxidation of n-decane/O2/N2 1000/15500/983500 ppm at 8 atm and 830 K. 

Solid lines: Original Westbrook et al. model;  Dashed lines: Updated Westbrook et al. model

Detailed temporal fuel speciation during initial fuel destruction significantly constrains 
model predictions.  But small species chemistry is also important.
 Updating of C2 chemistry leads to significant improvements in prediction of ethylene, 
formaldehyde, and methane measurements.

• S Jahangirian; S Dooley; F M Haas; F L Dryer (2011) CombustS. Jahangirian; S. Dooley; F. M. Haas; F. L. Dryer (2011). Combust
Flame. DOI:10.1016/j.combustflame.2011.07.002

• Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ (2009).
Combust. Flame 156: 181-199.
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VPFR oxidation of n-decane/O2/N2 1000/15500/983500 ppm at 8 atm and 830 K. 

 Significant amounts of large olefins (predominantly, but not exclusively 1-olefins) are
observed.
 B t i i h i t ll R O h i t b th iti l t di ti hi h Beta-scission chemistry as well as ●R+O2 chemistry are both critical to predicting high
molecular weight intermediate species, particularly olefins.
Concerted elimination reaction of ●RO2 to form an olefin and ●HO2 appears of substantial
import for improving model predictions against these data.

• S. Jahangirian; S. Dooley; F. M. Haas; F. L. Dryer (2011). Combust
Flame. DOI:10.1016/j.combustflame.2011.07.002

• Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ (2009).
Combust. Flame 156: 181-199.
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n-Decane Temporal Speciation Predictions: JetSurf 2.0 
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• H. Wang, E. Dames, B. Sirjean, D. A. Sheen, R. Tangko, A. Violi, J. Y. W. Lai, F. N.
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Cernansky, D. L. Miller, R. P. Lindstedt, A high temperature chemical kinetic model of n
alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-
cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19, 2010
(http://melchior.usc.edu/JetSurF/JetSurF2.0).
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Cycloalkanes are a significant fraction of 
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of the improvement remains to be fully 
evaluated. 
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n-Propylbenzene (nPB) Kinetic Modeling
Won et al (2010) created a simple model forWon et al. (2010) created a simple model for 

n-PB based upon the Toluene kinetic model of 
Metcalfe et al. (2011) with additional reactions 
that emphasized that fuel consumption would 
take place principally by oxidation or 
decomposition of alkyl side chain. 
Model qualitatively reproduced counterflow 

diffusion flame strained extinction data Counterflow diffusion flame strained 
extinction measurements by Won et al.

diffusion flame strained extinction data.
Comparison of predictions for reflected shock  

ignition also could be improved upon.
Lower temperature departure of the data and 
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• Won, S. H., Dooley, S., Dryer, F. L., Ju, Y. (2011). Proc. Combust. Ins. 33, 1163-1170.
• Metcalfe, W.K., Dooley, S., Dryer, F. L. (2011). Energy & Fuels, In Press.
• Wang, H., Oehlschlaeger, M. A., Dooley, S., Dryer, F. L. (2011). 7th U.S. National Combust.
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This dataset has a carbon balance of 90-100 % 3000

n‐PB Temporal Speciation at 8 atm, 885 K
This dataset has a carbon balance of 90 100 %.
Small heat release (< 8 K) occurs over whole time 

range in measurements. 
Styrene, most abundant intermediate large 
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VPFR 1,3,5-TmB Temporal Speciation at 12.5 atm, 930 K
12000

 Development of a model for 1,3,5-trimethyl 
benzene is in progress.
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VPFR temporal speciation of 1,3,5 trimethyl benzene/O2 (1110/13300 ppm
in balance N2). Initial conditions: P=12.5 atm, φ=1.0, T=930K.

S. Jahangirian, S. Dooley, and F.L. Dryer, 240th American Chemical Society National Meeting, Advances in Fuel 
Science & Technology, Boston, MA, August 22–26, 2010.



Physical Property of Surrogate Fuels
S t F l F l tiSurrogate Fuel Formulation

Emulation of Physical Properties Emulation of Combustion Phenomena
Physical Property Targets:

 Distillation Curve

Combustion Property Targets:

 Average Fuel Molecular Weight Distillation Curve

 Density

 Viscosity

 Average Fuel Molecular Weight

 Hydrogen/Carbon Molar Ratio

 Cetane Number

 Thermal Conductivity  Threshold Sooting Index

 Little attention  on how to integrate successful approaches to each issue into a 
framework for the mutual evaluation of the two issues.
Liquid fuel combustion phenomena depend of the gas phase reaction for chemical heat 

release, liquid fuel properties dictate vaporization and mixing process – multiphase 
problem.

 Surrogate formulation emulating both physical properties of the target real fuel in addition 

23

to combustion kinetic properties across the distillation curve.



Physical Property Consideration
 Equation of state (EOS) to determine the liquid phase thermo-physical 

properties – Helmholtz form of equation of state due to its high accuracy.

 NIST REFPROP (Reference Fluid Thermodynamic and Transport Property) ( y p p y)
and ThermoData Engine (TDE).

 Top – down approach: Liquid phase physical property evaluation once the 
surrogate fuel has been formulated to match the combustion propertysurrogate fuel has been formulated to match the combustion property 
targets.

Mole Fraction DCN H/C MW/ g 
mol-1

TSI

Jet-A POSF 4658 47.1 1.957 142.01 21.4

1st Generation 
Surrogate

n-decane iso-octane toluene
47.1 2.01 120.7 14.1

0.427 0.33 0.243

2nd G ti n-dodecane iso-octane 1 3 5 TmB n-PB2nd Generation 
Surrogate

n-dodecane iso-octane 1,3,5 TmB n-PB
48.5 1.95 138.7 20.4

0.40 0.29 0.07 0.23

*H-B Surrogate n-dodecane Tetradecane 1,2,4 TmB
60.4 1.89 158.3 28.7

0.288 0.304 0.408
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*Bruno, and  Huber (2010)). Energy Fuels: DOI:10.1021/ef1004978



Liquid Phase Properties
MW is considered as a combustion• MWavg is considered as a combustion 

property target to constrain mass 
diffusive issues.

• MWavg is appropriate to some degree avg pp p g
as a measure of other physical 
properties.

• 2nd generation surrogate density is 
estimated to be 5 6% lower thanestimated to be ~ 5-6% lower than 
measurements.

• 2nd generation viscosity deviates by• 2nd generation viscosity deviates by 
~45 – 25% from 273 – 373 K, but is likely 
to deviate minimally at the operating 
temperatures of gas turbines.
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Moving Forward on Physical/Chemical Property Integration
Mole Fraction DCN H/C MW/ g 

mol-1
TSI

Jet-A POSF 4658 47.1 1.957 142.01 21.4

1st Generation n-decane iso-octane toluene
47 1 2 01 120 7 14 1Surrogate 47.1 2.01 120.7 14.1

0.427 0.33 0.243

2nd Generation 
Surrogate

n-dodecane iso-octane 1,3,5 TmB n-PB
48.5 1.95 138.7 20.4

0.40 0.29 0.07 0.23

Constraint in the lightly branched alkanes – higher 
molecular weight isomer might benefit matching 
combustion targets …also there are other ways of 
accomplishing the appropriate result. 

•The straight chain alkane fraction can be represented as a distribution of 
alkanes (e.g. nC6 – nC16) instead of just a single component.

Ch i l ki ti f t i ht h i lk i ll d fi d• Chemical kinetics of straight chain alkanes is well defined.

• The distribution of alkanes will increase the average molecular weight and 
hence permit flexibility in emulating liquid phase physical properties.
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Surrogate Fuel Formulation for emulating fully vaporized real fuel combustionSurrogate Fuel Formulation for emulating fully vaporized real fuel combustion
 MURI property target approach has been refined and comprehensively 

tested! 
 Property targets reflect the integral interactions of the important discrete chemical functionalities 

present in the fuelpresent in the fuel.
 The method permits flexibility in selecting surrogate mixture components and results in non-unique 

compositions that emulate the specific combustion property targets. 
 Experimental replication of real fuel global combustion properties is typically in better agreement than 

detailed model predictions based upon surrogate compositiondetailed model predictions based upon surrogate composition.

 A four component, 2nd Gen surrogate mixture of n-C12/iso-C8/n-PB/1,3,5 TmB
can replicate the combustion property targets of petroleum derived fuels, 
alternative fuel feed stocks and their blends with petroleum.
 Weakly branched isomer and cyclo alkane components generally produce only minor changes in 

surrogate performance (but can be added within the context of the MURI formulation methodology).

 Efforts emphasize improving accuracy of individual component and mixture 
model predictions for the 2nd Gen surrogate.p g
 MURI contributing heavily to enhance experimental databases for all components with special 

emphasis on aromatics.
 Significant model advancements have been achieved for toluene, xylenes, n-PB, and 1,3,5 TmB.
 2nd generation surrogate model development underway.g g p y
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Integrating Surrogate Fuel Physical and Chemical Kinetic Properties

Summary(2)
Integrating Surrogate Fuel Physical and Chemical Kinetic Properties
 Properties, especially distillation curve and vapor-liquid equilibrium, require 

molecular weight and functional group distributions. 
 Relative importance of physical properties and chemical kinetic properties to multiphase combustion 

behavior observations in gas turbine environments need experimental evaluation (e g “Rules and Toolsbehavior observations in gas turbine environments need experimental evaluation (e.g. “Rules and Tools 
program”).

 What uncertainties in the respective property emulations are acceptable?
 The MURI surrogate formulation has been confirmed to encompass using 

h d b l t f ti t f l t t i thydrocarbon solvent fractions to formulate surrogate mixtures. 
 Surrogate solvent formulation economics permit applied testing applications of the techniques.

 Surrogate Solvent kinetics can still be emulated by those for smaller numbers of pure 
components. 

 Surrogate solvent formulations can be used to independently vary distillation curve, and molecular 
class distributions over the curve while maintaining  the same fully prevaporized combustion kinetic 
behavior.
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 Demonstrate added cases of surrogate mixture comparisons with  other gas 
turbine fuel samples over wide range of fundamental venues.
 Larger database of combustion property targets already under 

construction for other POSF’s.
 Collaborate in test/proof that solvent surrogate formulation approach can 

connect fundamental MURI mixture formulation concept and applied 
research testing.

 Provide further validation data for n-dodecane, n-decane, iso-octane, and , , ,
alkyl aromatics in kinetic transition to high temperature (beta 
scission/chemical branching behavior); higher MW alkanes also of interest.

 Improve alkane and aromatic oxidation kinetic models for surrogate 
mixtures.

 Further evaluate/validate MCH kinetic modeling and inclusion of MCH as a 
surrogate component.

 Produce MURI mixture kinetic model and appropriate reductions for 
validation/application.

 Further evaluate MURI surrogate mixtures to emulate real fuel sooting 
behavior in fundamental and applied venues.
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Current science findings can assist in unraveling

Future Drivers
Current science findings can assist in unraveling

property/combustion kinetic effects in multi-phase, applied 
combustion experiments.
Even the most developed and studied kinetic models require furtherEven the most developed and studied kinetic models require further 

refinement to replicate real fuel behavior as well as achieved in 
experimental comparisons of real fuel and the  formulated surrogate 
mixtures.
Normal-alkane chemistry is controlling but aromatic chemistry is 

limiting.
Improved kinetic models for aromatics  are essential.

E i i Q ti f ti i i t !Engineering Questions of continuing importance!
What level of emulation of real fuel properties must surrogates meet? 
Gas phase kinetic property targets?
Kinetic model predictive accuracy requirements?
Physical property predictive accuracy requirements?
Optimal liquid fuel physical and chemical property integration? 
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