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Stanford Objectives and Strategy

Extend and utilize modern shock tube/laser methods to
establish a detailed, higher-quality kinetics database

Leading to:

Improved detailed mechanisms for
jet fuels and jet fuel surrogates

Target Jet Fuel Surrogate Components:
n-alkanes, cyclo-alkanes, branched alkanes



Research Summary

Year 1: n-alkanes, ignition delay time (1;,, ) measurements
- n-alkanes (C5-C9): t1;,,, at low pressures
- n-dodecane (C12): t;,,

at high pressures
Year 2: n-alkanes and cyclo-alkanes, multi-species time-histories
- cyclo-alkanes (CH, MCH, BCH): t,,, at low pressures
- n-heptane oxidation: multi-species profiles
Year 3: n-alkanes and cyclo-alkanes, multi-species time-histories

- n-dodecane & MCH oxidation: multi-species profiles

New Studies: di-methyl alkanes
- dimethyl-pentane, dimethyl-hexane, dimethyl-octane
- ignition delay times, multi-species profiles



Stanford Shock Tube & Laser Facilities
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How Well Do n-Alkane Mechanisms for T;,,
Fit High T Data: 1250-1500K, 2 atm?

IPT Experiments
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e Westbrook et al. (2009) predict
small variation of ignition delay
time with carbon number
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How Good are Current Models at Low Pressure?

Example: n-Nonane Ignition Delay Times
IPT Experiments
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What about sub-atmospheric pressures?
High-altitude re-light problem?



How Good are Models at Sub-Atm Pressure?
n-Heptane Ignition: 0.35 atm

1667K 1250K

 n-Heptane data extended 1009
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= Stanford

e Future Work: JetSurF 1.0

Extend sub-atm data to

wider range of conditions 055 060 065 0.70 075 0.80 0.85
1000/T [1/K
and other fuels K]




Ignition Delay Time [ms]

How Well Do n-Alkane Mechanisms for T;,,
Fit Low T Data: 700-1000K, 20 atm?
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e Westbrook et al. (2009) predict
NTC behavior with little variation
with carbon number
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Direct Comparison of Simulation and Experiment

Low Temperature: 700-1000K, 20 atm

* High pressure shock
tube data reveal larger
variation with carbon #
than predicted by
simulations

- Conclusion: critical
need for additional
experiments at low T and
high P
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5000

Cyclo-Alkane Ignition Delay Times:

CH, BCH and MCH
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= But MCH ignition distinctly slower than BCH, CH and n-hexane
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Branched Alkanes

Major components of synthetic jet fuels ° 2:5'dim£|t_|hv|hexane (DMH)
3

J\/\I,cHa
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Branched Alkanes: Low Pressure Study

e 2,5-dimethylhexane (DMH)
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 dimethyl/trimethyl alkanes have similar 1;,

1 All iso-alkanes much slower than n-hexane,
(and thus most n-alkanes)
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2,7-Dimethyl Octane: HP Ignition Delay Times

First high pressure 1,
15 atm, 900-1200 K
approaches NTC regime

Variation with @
weak variation at high T

Iy
o
o
o

MIT/RMG generated model

710 reactions, 108 species

first effort captures NTC P
1000/T [K™] |

Ignition Delay Time [us]

2,7-Dimethyl Octane / Air
15 atm

Influence of Carbon #
DMO very similar to DMH
(2,5-dimethyl hexane)

Need for species time-history data!!
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Multi-Species Laser Absorption Data:
n-Heptane Oxidation

300 ppm Heptane/O,/Ar, ¢=1

e Radicals (OH)
* Stables (C,H,) 1090¢
* Products (H,0; CO,) |

100

 Unique data with
high sensitivity and
fast time response

Mole Fraction [ppm]

1494 K |

. 2.15 atm

10 Ill. 11;00 - ItlibOO
Time [us]

How does JetSurF compare with measurement?



Comparison with JetSurF Model
n-Heptane Oxidation

. 300 ppm Heptane/O,/Ar, ¢=1
Current model in PP ptane/O,/Ar, ¢

excellent agreement
with 1000F
multi-species data

JetSurF 1.0

lllustrates impact of

multi-species data 100

Mole Fraction [ppm]

Further work needed
on radical reactions P s 2.15 atm |

What about larger
n-alkane fuels?
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Studies of Individual
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Multi-Species Time-Histories

n-Heptane
n-Dodecane
Cyclo-Alkanes



Representative Multi-Species Time-History Data:
N-Dodecane Oxidation

First multi-species
campaign for n-dodecane
oxidation

Fuel: n-Dodecane
Stable intermediates: C,H,
Small radical pool: OH

Combustion products:
H,0, CO,
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Comparison of N-Dodecane Data and JetSurF

Fuel (n-Dodecane) and Intermediate Products (Ethylene)

JetSurF 2.0

e Good agreement with

dodecane
decomposition rate 1
=
& .
* Fair agreement with < :
C,H, plateau, but ... g [ oetesme |
$ 100 :
e |gnition delay times are : \ :
. I \ |
slightly long 10 100 1000

Time [us]

1410K, 2.3 atm
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Comparison of N-Dodecane Data and Model:
Transient Radicals - OH

Radical-formation peak
and radical-scavenging
minimum not captured
accurately

1000 ¢
[ 1410K, 2.3 atm
[ 460ppm C,,H,./O,/Ar, $=1 N

100 |

Improvements needed in
small-radical
sub-mechanisms!
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* What can we learn from n-dodecane pyrolysis?



Ethylene Yields during n-Dodecane Pyrolysis

1 6 I | | |
e Ethylene yields measured at 1400 ppm dodecane in argon
19 atm during pyrolysis* -5 19atm g -
[
 Data courtesy > 4r
egpe c
M. Billingsley AF-ERC (2011) 23t
i
X D -
e S x  Current work
* Data reveal significant ol ~ - JetSurF2.0 |
. —-— LLNL n-alkane
differences from model . | . .
. .. 0
predictions 1000 1200 1400 1600 1800

Temperature [K]

e Refinement needed in n-dodecane models at HP!



Multi-Species Time-Histories

n-Heptane

n-Dodecane

cyclo-Alkanes
cyclohexane
methylcyclohexane ¢=mm
butylcyclohexane
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H,O Concentration [ppm]

Methylcyclohexane Oxidation
Multi-Species Time Histories: H,0, OH
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* Time-history data available for CH, MCH and BCH



H,O Concentration [ppm]

Methylcyclohexane Oxidation
Comparison with Models

3000 — 200 ————————
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 JetSurf/Orme capture post-ignition H,O plateau levels

e JetSurf captures post-ignition OH plateau level

e Wide variability between model simulations for
methylcyclohexane H,0 and OH time-histories




MCH Decomposition: C,H, Yields

e Ethylene yields 3.0 , | . |
megsured at 20 atm 2000 ppm MCH in argon
during MCH pyrolysis 2:5120 atm il

 Data courtesy JetSurF 2.0 _

M. Billingsley AF-ERC
(2011)
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e Refinement needed in cyclo-alkane models!
- Particularly in fuel decomposition pathways!



Summary

Fundamental shock tube kinetic database now available:
— Ignition delay times, species time-histories

— n-alkanes, cyclo-alkanes, iso-alkanes

Next Step: Dimethyl Alkanes
— Full ignition delay time study
— Multi-species time-history study

— Close collaboration with modelers
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Stanford Flow Reactor Studies
C. T. Bowman and S. Banerjee

Flow Reactor Test Conditions: n-dodecane, 1 atm, 1150K, lean to rich (D = 0.8-1.5)
Typical Reaction Time Scales: 35 - 40 ms

Carbon Balance: +85% at all axial locations; +95% downstream

Time Zero: Zwietering mixing/reaction model:

- single mixing parameter determined experimentally by inert tracer injection;

- model validated using a single-step elementary reaction with well-known kinetics
-(concerted elimination reaction of ethyl chloride)

Flow Reactor Diagnostics: GC, NDIR, PMA, Thermocouple
- GC: C1-C4 stable HC intermediates, C1, C2 aldehydes, H,, CO, CO,, O,
- NDIR: CO, CO,; PMA: O,; NDIR and PMA allow a cross check on GC data

Key Observations:
- fair agreement with JetSurf 2.0
- predicted reaction time scales are too slow (by about 20%)

Next Step: currently running at elevated pressures 2 & 4 atm



