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1. Nonlinear Extrapolation for
Laminar Flame Speeds




Need to Eliminate Stretch Effects

Reported Experimental
Measurements of the Maximum
Burning Velocity for Methane/Air

Flames at 1 atm, 298K
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stretch effects
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Strong Nonlinearity in
Expanding Flames
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Key Elements of Analysis

Thin Flame Arbitrary Geometry




Extrapolation Relations for

Unconfined Spherical Flames
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Representative Extrapolations
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Representative Extrapolated Data
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2. Laminar Flame Speeds of
Cyclo-alkanes




Motivation

Cyclohexane and its mono-alkylated cyclohexanes are
components of surrogate fuels

Only atmospheric laminar flame speeds have been
experimentally determined for these fuels (Ji & Egolfopoulos,
2011), showing reduced flame speeds for the mono-alkylated
cyclohexanes.

Lower flame speeds attributed to the 3-body termination
reactions

Need high-pressure flame speed data:
e For mechanism development
* Accentuate the pressure-dependent 3-body termination reaction
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Representative Data an
Comparison: Pressure = 1 atm
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Quantitative High Pressure Effects
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* At both low and high pressures, methyl- and ethyl-cyclohexanes have
similar flame speeds which are lower than those of cyclohexane
 The difference increases (5% vs.13%) from 1 atm to 10 atm.

 Additional data up to 20 atm.
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3. NTC-Affected Ignition in
Nonpremixed Counterflow




Motivation

e NTC behavior:

» Extensively observed in homogeneous
systems

* Inferred from detailed computational

]
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studies of transport-affected
inhomogeneous flows (J.H. Chen; K.
Seshadrig)

* Need clear theoretical/experimental
manifestation of global ignition &
combustion behavior in response to flow
straining and nonuniformity (e.g.
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System Specifications

e Nonpremixed diluted n-heptane against heated air

® LLNL detailed mechanism of 561 species and 2539
reactions reduced to a skeletal mechanism of 88
species and 387 reactions using directed relation graph

(DRG).
® Qualitatively similar results also obtained for DME




NTC Response Observed at Low Strain
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Prominent NTC Response at
Elevated Pressures (100/s)
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Essential Role of Heat Release

e Both primary and secondary 107
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Summary of NTC-Affected Behavior

e NTC behavior manifested for flows at low strain rates
and/or elevated pressures

e NTC response constitutes a separate (weak) flame
system, with distinct (secondary) S-curve ignition-
extinction states grafted onto the lower branch of the
primary S-curve.

* At lower pressures ignition occurs in two stages with
increasing temperature

e At sufficiently high pressures ignition occurs in a
single, NTC-control stage




Work Plan

® Determination of laminar flame speeds at elevated

pressures:
¢ iso-Alkanes: 3-methylheptane; 2,5-dimethylhexane; 2,7-
dimethyloctane
e Aromatics: benzene; toluene; n-propylbenzene; o-xylene; m-xylene;
p-xylene; 1,2,4-trimethylbenzene;
1,3,5- Trimethylbenzene

e NTC-affected flame phenomena

e Counterflow and stagnation flow ignition experiments on DME and
heptane to substantiate theoretical findings

* Analyze other ignition phenomena (e.g. spark ignition, jet ignition)
* Study of the role of chemical oscillation
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