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Outline

•
 

Background
–

 

Difference between the equations solved for supercritical-pressure flows 
using Direct Numerical Simulation (DNS) and those for atmospheric-

 
pressure using DNS

–

 

How does it affect the characteristics of the flow?
–

 

How does it affect Large Eddy Simulation (LES) modeling?

•
 

The Subgrid-Scale (SGS) scalar variance under 
supercritical-pressure conditions (Phys. Fluids, 23(8), 
doi:085101 (22 pages), 2011 )
–

 

Why are we interested in this subject prior to conducting DNS of

 
supercritical-pressure reactive flows?

–

 

Results

•
 

Summary and conclusions



Background

•
 

Motivation              Modeling of very high pressure flows with 
special emphasis on diesel, HCCI and future engines

•
 

Distinctive features of supercritical flows
–

 

experiments: ‘Fingers’

 

of fluid emerging from jets (e.g. Chehroudi

 

et al. 
1999, 2002; Mayer et al. 1996, 1998; Oschwald

 

and Schik

 

1999)
–

 

DNS of mixing layers: High density-gradient magnitude regions ↔ ‘fingers’, 
arising from initial density stratification and from mixing (e.g. Miller et al. 
2001; Okong'o et al. 2002)

•
 

Want to develop models for LES of high-p turbulent reactive flows
–

 

Check whether atmospheric-p models apply           use DNS as a tool
–

 

When atmospheric-p models do not apply             develop appropriate models

•
 

Goal of LES                duplicate on a local basis the DNS features



Some experimental data, 1 of 2

N2

 

into N2

 

injection
pc

 

= 3.4 MPa, Tc

 

=126.2 K



Some experimental data, 2 of 2
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=1.01×104
ReN2

 

=1.22×105
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=2.02×104
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= 29,200 Rejet

 

= 58,600 Rejet

 

= 57,500



Difference between supercritical-p and 
atmospheric-p formulations, 1 of 3

•
 

Real-gas equations of state (here Peng-Robinson) for mixtures

p  Ru T/v PR − bm  − am /vPR
2  2bm v PR − bm

2 

v S  v − v PR

where vs

 

is the volume shift (Okong’o et al., 2002)

v S  ∑ X
∂G 

0

∂p

and G0


 

is a curve-fitted reference Gibbs function ( Harstad et al., 1997)

am  ∑ i,j X iX ja ijT

bm  ∑ i X ib i

v  m/,



Difference between supercritical-p and 
atmospheric-p formulations, 2 of 3

•
 

Species-mass and heat fluxes from fluctuation-dissipation theory 
(Keizer , 1987) 

J  −∑
1

N
m m 

m Dm ,YY 
′ ,

q  −∇T − 1
2 Ru T∑

1

N

∑
1

N

 IK,Dm ,YY 
′


′  m

m m 
 IK,

∇T
T  1

Ru

∇/T
m 

−
∇/T

m 

∇ 

T  − h

T 2 ∇T  v 

T ∇p  Ru ∑
1
≠

N D

X 
∇X

Binary-species case
j2   BY∇Y2    BT∇T   BP∇p 

qIK  C Y∇Y2    C T∇T   C P∇p 

B’s and C’s are functions of ψ, mα

 

’s, Ru

 

, αIK

 

, αD

 

, Sc, Pr, μ, v, h.



Difference between supercritical-p and 
atmospheric-p formulations, 3 of 3

•
 

Calculation of the mass diffusion factors
D  ∂X /∂X  X ∂ ln/∂X

where
 ≡ /

o

and 

 

is the fugacity with superscript 0 denoting the pure species.

• Measures of departure from
-

 
Perfect gas: Compression factor

-
 

Mixture ideality: Mass diffusion factors

Z  p/TRu /m

D  1  X 
∂ ln
∂X 

DNS is particularly well suited for 
-

 
understanding the flow features

-
 

extracting information utilizable for LES

for a binary-species system



Are SGS-flux models sufficient when 
the small-scales are anisotropic?

•

 

Small scales anisotropy ⇔ there are gradients at the small scales
•

 

Can be checked using DNS
•

 

Example: mixing of heptane/nitrogen at p=60 atm

 

(Okong’o and Bellan, JFM, 
2002)
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



Example of LES without or with the extra 
SGS model (cst. coeff. SGS-flux models)

without with (except a,b,c)(JFM, 645, 211-254, 2010)



Example of LES with the extra SGS 
model: mixed dynamic model

FCDNS

MSSD
with
p-correction

(JFM, 645, 211-254, 2010)

A factor of 15 reduction in computational time!



Why are we interested in the SGS 
scalar variance under supercritical-p 

conditions?
•

 
Often made argument: flames are thinner as p increases          have 
flamelets

 
(Williams) and may use the flamelet

 
approach (Peters)

•
 

Results from binary-species mixing 
–

 

Seem to support the existence of flamelets
–

 

Flamelet

 

approach, if a conserved scalar can be defined
–

 

Unclear though if a conserved scalar can be defined (to be determined in the 
future for reactive flows)

•
 

Assuming that a conserved scalar can be defined
–

 

Is the SGS PDF of the conserved scalar of the form usually assumed so that 
can be determined with at most 2 moments?

–

 

If so, can the SGS scalar variance equation terms be modeled and

 

the equation 
solved?

–

 

If the terms cannot be modeled, then can the SGS scalar variance

 

be directly 
modeled?



Scalar variance and dissipation 
definition

Scalar variance

Scalar dissipation, i.e. irreversible entropy production 

j2   BY∇Y2    BT∇T   BP∇p 



The SGS scalar variance equation: 
form 1

Common terms with the atmospheric pressure 
condition equation (e.g. Jiménez

 

et al. POF 
2001)

New terms due to the product of the diffusivity and the 
mass diffusion factor           variation 

New terms due to the  temperature and pressure 
gradients

  Z 2 u − Z 2 u

  Zu − Zu



The SGS scalar variance equation: 
form 2

Common terms with the atmospheric pressure 
condition equation (e.g. Pera

 

et al., Combust. 
Flame 2006)

New SGS terms due to the  temperature and 
pressure gradients

New SGS terms due to the product of the diffusivity 
and the mass diffusion factor           variation 

  Z 2 u − Z 2 u

  Zu − Zu



SGS scalar variance equation assessment: 
form 1: database HN600

C7

 

H16

 

/ N2



SGS scalar variance equation assessment: 
form 2: database HN600

C7

 

H16

 

/ N2



SGS PDF of the scalar : HN600
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Δ /Δx DNS  4 ;   dash
Exact SGS PDF;  solid
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Exact SGS PDF: evaluated 
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PDF over coarsened-grid 
planes



Assessment of point-wise modeling of 
a non-linear function

Subcritical dissipation for 
1D unsteady mixing layer:Dirac

Gaussian



 
PDF

Computed 
using the PDF 
with exact 
moments
Computed using 
the database



ADM of the Favre SGS scalar variance

-10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2 ∆/∆xDNS = 2

x2/δω,0

<
ρσ

Z
>

-10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2 ∆/∆xDNS = 4

x2/δω,0
<
ρσ

Z
>

-10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2 ∆/∆xDNS = 6

x2/δω,0

<
ρσ

Z
>

-10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2 ∆/∆xDNS = 8

x2/δω,0

<
ρσ

Z
>

-10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2 ∆/∆xDNS = 10

x2/δω,0

<
ρσ

Z
>

-10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2 ∆/∆xDNS = 12

x2/δω,0

<
ρσ

Z
>

Approximate Deconvolution

 

Model applied to conservative quantities

Exact SGS scalar variance: solid
1st

 

,2nd, 4th, 5th

 

order approximations: 
dotted
3rd

 

order approximation: dash-dotted

Z∗  Z  Z − Z  Z − 2 Z  Z . . . . .

∗     −    − 2   . . . . .

Z∗  Z  Z − Z  Z − 2Z  Z . . . . .

Z∗∗  Z∗/∗

invoking the assumption
Z∗∗ ≃ Z∗

Z  ∗Z∗∗Z∗∗

∗
− ∗Z∗∗

∗
∗Z∗∗

∗



Dynamic gradient-based modeling of 
the SGS scalar variance, 1 of 4
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Arrow indicates the planar 
mean

Planar averages



Dynamic gradient-based modeling of 
the SGS scalar variance, 2 of 4

Scatter plots in plane

blue: our model
black: classical model

red: classical model



Dynamic gradient-based modeling of 
the SGS scalar variance, 3 of 4

Cross-stream profiles

Exact: solid
New model: dash-dot
Classical model with correct filter

Classical model with incorrect 
filter               : dashed

: dotted



Dynamic gradient-based modeling of 
the SGS scalar variance, 4 of 4

Model coefficient

New model: dash-dot
Classical model with correct filter

: dotted

Classical model with incorrect
filter                : dashed



Reproducing a non-linear function 
with the models

Subcritical dissipation for 
1D unsteady mixing layer:

3rd

 

order ADM Gradient modelZ

 

model:



Total scalar dissipation versus Fick’s 
scalar dissipation

Conditional averages on F(Z): χT (circles) and χF

 

(stars).



Summary and conclusions

•
 

Studied the SGS PDF of the scalar and the scalar variance, σZ

 

,
 under supercritical-pressure conditions

–

 

Showed that the pdf

 

of the scalar can be well approximated by a β

 distribution
–

 

Equation for σZ

 

contains significant terms due to non-uniform diffusion 
coefficients and Soret

 

effects
–

 

Provided two models for σZ

 

: Approximate Decomposition Model and a new 
Gradient Model

•
 

Showed that 
–

 

The ADM model is not necessarily convergent for compressible flows, 
although some of its approximations can be more accurate than the new 
Gradient Model

–

 

The new Gradient model is accurate for very large filter to DNS-grid ratios
–

 

The total scalar dissipation is not necessarily well modeled by the Fick’s

 scalar dissipation
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