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e Axial and radial mean velocity profiles and turbulence intensity
using hot wire anemometry.

e Axial and radial mean temperature profiles using thermocouples.
e Scalar mixing profiles using tracer injection.

e Comparison of data with CFD simulations using Fluent.
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/

Different approaches to mixing and reaction “time zero” issues:

« “Time shifting”
o« “Initialization”
+ Simultaneous model of mixing and reacting processes

N /

/ One-dimensional mixing-reacting model based on reactor flow \
conditions and measured temperature profiles.

Only a single mixing parameteris needed.

Boundary layer correction from centerline velocity

\measurements. /
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JP8 Property JP8 Composition

Molecular 152
We|ght M n-Paraffins
M i-paraffins
Appx Formula el
M Cyclo-
Boiling Range 140-300 C Alkane

B Aromatics

Sp.Grav. At15C 0.81
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Species Profiles — Oxidation Experiment
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Comparison of data with CNRS Mechanism
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Cc-C H Abstraction H/OH/O
fission{25%) (75%)

1. Dodecane primarily
undergoes H-abstraction by
0/0OH/H to form dodecyl
radicals.

2. Dodecyl undergoes B-scission
to break into C,-C;, alkenes
and corr. alkyl radicals.

3. The higher alkenes undergo
pyrolysis or H-abstraction
followed by B-scission to
break up into smaller alkenes

and alkyl radicals.
4. Diagram shows early stages

(1ms) when 50% Dodecane
has been converted.

CH,
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Cc-C H Abstraction H/OH/O
fission(25%) (75%)

1. Dodecane primarily
undergoes H-abstraction by
O/OH/H to form dodecyl
radicals.

2. Dodecyl undergoes B-scission
to break into C,-C,, alkenes
and corr. alkyl radicals.

3. The higher alkenes undergo
pyrolysis or H-abstraction
followed by B-scission to
break up into smaller alkenes
and alkyl radicals.

4. Diagram shows early stages
(1ms) when 50% Dodecane
has been converted.
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Decomposition of dodecane to alkenes in oxidation experiments at temperatures
greater than 1000K is very fast so that heat release (and final product formation)
is controlled by oxidation of hydrocarbon fragments from dodecane decomposition.

The reaction pathways to hydrocarbon fragments are similar in both
dodecane oxidation and pyrolysis.

e Future experiments will involve oxidation and pyrolysis of other jet fuel
components (cycloalkanes, iso-alkanes and aromatics) to identify reaction
pathways and to validate detailed reaction models.
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