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• Reduced kinetic models for hypersonic reacting flow simulations 
− endothermic fuels containing H2, CH4, C2H2, C2H4, C3H6, … 

− predict critical induction/flame holding limits 

− goal: turbulent mixing-chemistry interactions 
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Objectives 

• Reduced kinetic models for soot formation/oxidation under high-
pressure conditions (gas turbine engines) 
− non-premixed and premixed high-pressure combustion 

− goal: soot data and uncertainties from GC/MS, SMPS, TEM, LII 

− soot modeling? (PrIME?) 

•  Main focus of this presentation: Uncertainty analyses  

− detailed kinetic model parameters (A-factors) 

− transport coefficients 

− Metamodels (PrIME?) 
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Model Reduction 

• PCAS based method (Vajda 1985, Brown 1997) applied for ethylene-air:  
 

 

 

• Esposito and Chelliah. Combustion and Flame 158 (2011) 

• combined sensitivities of  ignition, propagation, and extinction  

• 37-38 species combined skeletal model from USC Mech II* (2009)  

• QSSA for reduced reaction model for ethylene-air: 
• 20-step reduced reaction model 
• Zambon and Chelliah, Combust. and Flame (2007) 

• NIST Chemical Kinetic Model Database, PrIME? 

Skeletal and Reduced Reaction Models: 
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Model Reduction 
• L2 norm-error from PCAS:  

• Integrated over  range of conditions 

• Esposito and Chelliah, Combustion and Flame158 (2011) 
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Some Experimental Data 

Fuel-air system Local Extinction 
Strain Rate (s-1) 

Model Predict. (s-1) 
with finite U’s 

Methane 380±21 456-470 
Ethylene 1284±48 1223-1232 
Propylene 617±34 606-624 
n-Butane 499±38 544-550 
diluted Hydrogen 2542 ± 112 2644 

• Non-premixed flame extinction limits with 2σ uncertainties (Sarnacki et al., 
CNF 2012, Esposito et al. CTM 2012)  

• Model predictions using USC Mech II for HC’s  and JetSurf 2.0 for H2 

• Soot characteristics in non-premixed flames, p=1 to 8 atms  

Total uncertainty 
~ 40% 

Total uncertainty 
~ 66% 

Total uncertainty 
~ 120% 
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Variability of Tuned Kinetic Models 
• Detailed kinetic models continue to 

evolve/tuned/optimized, including H2! 
• Uncertainty reduction of kinetic 

models has received considerable 
attention 

• Uncertainty of simulations is due to 
two key parameters in flames used 
for model optimizations: 
– Chemical kinetic parameters 
– Transport coefficients (eg. binary 

diffusion coefficients) 
• Find the relative importance of the 

uncertainty of both CK and diffusion 
parameters 
– Search for conditions that minimize 

diffusion coefficient influence on 
target flame property predictions  
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H2/N2 (25%/75%)-Air 

Uncertainty of extinction limit using three latest 
H2/O2/N2 chemical kinetic models and 
diffusion coefficients (G Esposito, BG Sarnacki, 
HK Chelliah, CTM 2012)  
 
(B=Burk et al. 2012, H=Hong et al. 2011, 
J=JetSurf 2012, D=Middha & Wang 2002) 

 

 



Chemical Kinetic and Transport 
Uncertainty factors 

Reactions (H2) Uf 
H+O2=O+OH 1.2 
HO2+H=2OH 2.0 
OH+H2=H+H2O 1.3 
O+H2=H+OH 1.3 
OH+HO2=H2O+O2 2.0 
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Reactions (C2H4) Uf 
C2H3+H=C2H2+H2 3.0 
C2H3+H=H2CC+H2 5.0 
HCO+M=CO+H+M 4.0 
HCO+H=CO+H2 2.0 
C2H3+O2=CH2CHO+O 3.0 

Binary Diff Coeff (H2) Uf (%) 
D(H2,N2) 3% 
D(H,N2) 8% 
D(O2,N2) 12% 
D(H2O,N2) 12% 
D(H2,H2O) 12% 
D(H2,He) 5% 

• CK Uncertainties: 
− Complied by USC, NIST 

• Diff. Coeff. Uncertainties: 
− From various literature (Brown, 

PCES 2010) 



Uncertainty Propagation and HDMR  
• 2Np Monte-Carlo simulations of Np 

parameters bounded by 
experimentally determined 
uncertainty factors 

• ~15,000 simulations for each 
phenomenon: ignition, flame 
propagation, and extinction 

• Embarrassingly parallel simulations 
with distributed computing  

• Use untuned CK parameters 
(JetSurf 2.0 H2 sub-mechanism) 
 

• HDMR decomposition (Tomlin GUI): 
– Chemical parameters only 
– Binary diffusion coefficients only 
– Simultaneous analysis of chemical and 

diffusion parameters 
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Pdf of nonpremixed extinction limits 
(Esposito, et al., CTM 2012) 

H2/N2 (25%/75%) - Air 

Extinction 
2𝜎𝑒𝑒𝑒=4-8% 
(Sarnacki et al. 
2012) 
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H2/O2/He (0.14/0.07/0.79)  

Flame 
propagation 
2𝜎𝑒𝑒𝑒=6-10% 
(Burke et al. 
2011) 

Pdf of premixed flame propagation (Esposito, 
et al. in press, CTM 2012) 

 



Comparison of Propagated Uncertainties 
on Global Property Predictions 

• Uncertainty of CK much  
larger than experimental 
(2𝜎𝑒𝑒𝑒) 

• Uncertainty of Diff 
smaller than 2𝜎𝑒𝑒𝑒 for 
laminar flames, but 
comparable to 2𝜎𝑒𝑒𝑒 in 
non-premixed flames 

• High-pressure data may 
be ideal for optimization 
of some reactions that 
are important at low 
pressure!  
– Ex: HO2+H=2OH  

Laminar Flame Speed (1 atm) 

𝝓 1.0 1.74 0.85 

Model Diff CK Diff CK Diff CK 

𝝐 0.03 0.13 0.03 0.12 0.03 0.15 

Laminar Flame Speed (15 atm) 

𝝓 1.0 1.74 0.85 

Model Diff CK Diff CK Diff CK 

𝝐 0.03 0.31 0.02 0.33 0.05 0.41 

Extinction strain rate (1 atm) 

Case A B C 

Model Diff CK Diff CK Diff CK 

𝝐 0.08 0.28 0.06 0.22 0.08 0.19 
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Sensitivity of Reactions (Si) from 
Uncertainty Analysis 

Laminar Flame Speed (1 atm) 

Reactions 𝑼𝒇 
𝑺𝒊 

𝝓= 1.0 𝝓=1.74 𝝓=0.85 

HO2+H=2OH 2.0 0.471 0.447 0.488 

OH+H2=H+H2O 1.3 0.241 0.086 0.255 

O+H2=H+OH 1.3 0.084 0.033 0.084 

H+O2=O+OH 1.2 0.065 0.247 0.043 

Laminar Flame Speed (15 atm) 

Reactions 𝑼𝒇 
𝑺𝒊 

𝝓= 1.0 𝝓=1.74 𝝓=0.85 

HO2+H=2OH 2.0 0.502 0.539 0.497 

H+O2=O+OH 1.2 0.140 0.218 0.131 

OH+H2=H+H2O 1.3 0.170 0.031 0.105 

H+OH+M=H2O+M 2.0 0.087 0.072 0.036 

• Global Sensitivity Indices 𝑺𝒊 
(portion of the uncertainty of 
the target flame property 
due to single reactions, from 
variances Vi/V) 

• HO2+H=2OH most 
uncertain (𝑼𝒇=2.0) and 
highest contribution ~ 50% 

• CK contribution significantly 
higher at high p (see 𝜖). 

• Second most important 
reactions: 
– OH+H2=H+H2O at 1 atm 
– H+O2=O+OH at 15 atm 
– Decrease of their 𝑼𝒇 may 

make these flames even 
more suitable to improve the 
evaluation of HO2+H=2OH  
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Other Benefits of Uncertainty Based MC 
Simulations  

• Uncertainty back-propagation (can 
also include binary diffusion 
coefficient uncertainties) 

• Can identify feasible regions of 
multidimensional parameter space 

• More accurate meta-models for 
optimizations? 
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Turbulent Mixing Effects on Reduction? 
• What is the relevant combustion mode or regime for high-speed 

reacting flows? 
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• Preliminary SPIV indicates τmix≈ 60-100µs and τres ≈ 350µs 
– Hybrid RANS-LES also predict  τmix ≈ 100 µs 

• PaSR to test model reduction (Correa, Chen, Pope in 1990’s) 
 

 

UVa focused Schlieren  

Air M=2.0, 
T=1100K 

Fuel M=0.8, 
T=800K 
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• In PaSR, reactant streams consisting of fresh stream of premixed 
stoichiometric ethylene-air (95%) and pilot stream of equilibrium mixture (5%)  

Comparison of previous PaSR analysis 
regime vs. actual experimental conditions 
(AIAA Jan. 2012) 

Model Reduction with Turbulent Mixing 
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Effect of mixing time variability on 
evolution of average temperature 

Model Reduction with Turbulent Mixing 
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 tres=50µs tmix=50µs

 tres=100µs tmix=50µs

Effect of residence time variability on 
evolution of average temperature 

• As Damix and Dares  approach unity, significant sensitivity of PaSR results to kinetics,  
consistent with Chen 1997  

• Fresh mixture of stoichiometric ethylene-air (95%) mixing with a pilot stream 
of equilibrium mixture (5%)  
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• Fresh mixture of stoichiometric ethylene-air (95%) mixing with a pilot stream 
of equilibrium mixture (5%)  

• Sensitivity of PaSR results to 
perturbation of of H+O2=OH+O 
reaction 
 

• Need to construct sensitivity 
matrix in order to apply PCAS 
 

• Test reduction under realistic 
turbulent reacting flow conditions 
using PCAS, QSSA, RCCE, … 

Model Reduction with Turbulent Mixing 
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Summary 
• Uncertainty analysis of both kinetics and transport parameters, based on 

Morris Method for screening active parameters, followed by Monte Carlo 
simulations is computationally feasible using massively distributed 
computing 

•  HDMR analyses successfully applied to hydrogen-air system and ethylene-
air system to extract: 
• global sensitivities 
• feasible parameters, and  
• meta models 

• FUTURE WORK:  

• Extend the analysis tools to C3 and higher fuels 

• For turbulent reacting flows, use PaSR and its variants to test model 
reduction  via PCAS, QSSA, RCCE, etc. 

 Need to know realistic turbulent mixing times, residence times, etc. 
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