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Motivation @

e Global demand for transportation fuels is increasing rapidly.
— New discoveries of petroleum are not keeping pace.

e Global temperatures are rising.
— CO, from transportation is a major contributor to GHG.

e Strong motivation to reduce petroleum consumption.

e Engine-efficiency improvements offer a huge potential!

— Could be implemented in
a relatively short time.

e Biofuels or other renewable fuels
= also important part of solution.

— Progress is being made.

— Full discussion is beyond the
scope of this presentation.




Improving Vehicle-Fleet Efficiency @

e Diesel engine is the most efficient transportation engine ever developed.
— Potential fuel savings of ~30% over spark-ignition (Sl) engines.

e Drawbacks to diesel engines:
— Diesel emissions control is challenging = expensive aftertreatment.
— Cost of the engine alone can be significantly higher than Sl.

— Increased demand is driving up diesel fuel prices.
= US, ~ equal taxes, diesel 8% >

higher. Spread will increase if
diesel demand increases.

e Total cost can be > gasoline. iy
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Billions of Vehicles

e Looking to the future, the vast
majority of new vehicles added
will be in the developing world.

Industrialized Developing World

e For high-efficiency vehicles to have a large impact, it is important that
the technology be economical. = Particularly for the developing world.

e For full utilization of crude oil stocks = need a high-efficiency engine
fueled with “light” distillates (e.g. gasoline), as well as diesel.




Advanced High-Efficiency Engines
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e Advanced engines using HCCI or partially stratified “HCCI-like” combustion

can provide diesel-like or higher efficiencies & ultra-low emiss. NO, & soot.
— Potential for significantly lower cost than an emissions-compliant diesel.
— More-volatile, light-end fuels are well suited for HCCI.
— HCCI can also work well with biofuels and biofuel/gasoline blends.

e HCCI = dilute premixed charge and compression ignition.

— Volumetric flameless combustion.

— Never truly homogeneous due to natural thermal stratification (TS).
— Also advantages to adding controlled mixture stratification at some conditions

= partial fuel stratification (PFS).

e Challenges for HCCI:
— Controlling start of combustion.
— Extending operation to higher
loads.

e Fuel autoignition chemistry is
critical for both.

e Other low-T, HCCI-like concepts

also show promise (PCCI or RCCI).

Gasoline Engine
(Spark Ignition)

Diesel Engine
(Compression Ignition)

HCCl Engine

(Homogeneous Charge
Compression Ignition)
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Low-Temperature Combustion:
Ultra-Low Emissions (<1900K}




Low-Temperature Combustion Modes @

e HCCI is the most fundamental low-temperature combustion process and
the first to be widely investigated.

— High Efficiencies = Relatively high CR = 12 — 16, no throttle, and low
combustion temperatures = less heat-transfer loss and higher y.

— Ultra-low NOx & soot = Lean or dilute with EGR for low T

combst » and Well mixed

e HCClI is relatively well developed.

— GM demonstrated prototype cars operating in HCCI mode from idle — 70 mph,
using regular pump gasoline.

— Strong potential to extend operating range substantially with intake boost & PFS.

e Other low-T combustion modes rely on these same principles.
— PCCI or PPCI = developed to achieve HCCI-like combustion in diesel engines.
DI fueling ~60° bTDC for diesel-fuel vaporization and “premixed enough.”
> Widely used with diesel fuel for low emissions at light load = in production.

> Also efforts to use gasoline for longer ignition delay = more premixing for higher
loads, but difficulties with smoke & NO, = low-octane gasoline, RON ~70.

— RCCI = more recent concept introduced by Reitz et al. at UW = shows
promise, but requires two fuels (gasoline and diesel).

e Active research on these low-T modes & Autoig. chemistry important for all.




Sandia Dual-Engine HCCI Engine Laboratory @
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e Matching all-metal & optical HCCI research engines.
— Single-cylinder conversion from Cummins B-series diesel.
— Open combustion chamber.

Flame
Arrestor

Intake Plenum

50.72 mm
(1.997 in)

: Exhaust Plenum
Optical (e ‘
Engine Water & Oil
Pumps &

Heaters

e Bore x Stroke = 102 x 120 mm

e 0.98 liters, CR=14
I:)TDC-motored =30 — 100 bar



Nature of HCCI Combustion @

e Ignition timing is mainly controlled by fuel autoignition chemistry.
— Heat release prior to hot autoignition is kinetically controlled (LTHR, and ITHR).
— Adjustment of operating parameters required to control ignition timing.

e High-T combustion kinetics are very rapid.

e Main combustion HRR is controlled mostly by thermal stratification (TS).
— TS occurs naturally due to heat transfer and imperfect mixing with hot residuals.

— TS causes sequential autoignition & combustion of the in-cylinder charge.
> Crucial for controlling HCCI HRR for fully premixed combustion.

AUTOIGNITION
«— | —>
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Nature of HCCI Combustion @

e Ignition timing is mainly controlled by fuel autoignition chemistry.
— Heat release prior to hot autoignition is kinetically controlled (LTHR, and ITHR).
— Adjustment of operating parameters required to control ignition timing.

e High-T combustion kinetics are very rapid.

e Main combustion HRR is controlled mostly by thermal stratification (TS).
— TS occurs naturally due to heat transfer and imperfect mixing with hot residuals.
— TS causes sequential autoignition & combustion of the in-cylinder charge.
> Crucial for controlling HCCI HRR for fully premixed combustion.

Chemiluminescence of HCCI
(iso-octane, ¢ = 0.24, fully premixed)

AUTOIGNITION
«— —
KINETICALLY CONTROLLED THERMALLY CONTROLLED

Fuel autoignition kinetics control
ignition timing, and pre-igntion heat
release, i.e. LTHR & ITHR.

Thermal stratification usually
controls HRR of main
combustion.

Heat Release Rate

Crank Angle (Dec et al., SAE 2006-01-1518)



Ignition Chemistry Changes with Fuel-Type @

e Intake temperature (T,,) required  CA50 = TDC, Premixed, P, = 1 bar, 1200 rpm
for a given combustion phasing 200

varies substantially with fuel type. 5 1
— Representative real-fuel 5 1401
constituents and gasoline. g ool
e Hot-ignition temperature also varies, : 0]
but proportionally less than T,.. =01
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e However, for single-stage ignition

Mass-Avg. Temperature [K]
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fuels, early reactions also important. 1004 A— A /
— “Intermediate temp. heat release” 800 1 ‘ 1 12
(ITHR) reactions. 500 , 1 =

— : 300 320 340 360 380
Raise temperature to thermal Crank Angle [*CA]

runaway (hot-ignition point ~ CA10). (Hwang et al., C&F 154(3), 2008)



Intermediate Temp. Heat Release (ITHR)

e For all fuels, slower ITHR reactions
precede hot ignition (~ CA10).

—900<T<1050K

e For many single-stage fuels, trends
are self-similar, T, varies with T,..

— T, varies significantly with fuel-type.

e However, DIB (diisobutylene) has
more intense ITHR reactions.

e Also, for two-stage PRF80, ITHR
reactions more intense after LTHR.

— Note that HRR never goes to zero
after LTHR ends.

e Examine the effects of ITHR in
more detail for iso-octane (single-
stage) and PRF80 (two-stage)
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Intermediate Temp. Heat Release (ITHR) (W)

e For all fuels, slower ITHR reactions 1300
precede hot ignition (~ CA10).

—900<T<1050K

I
—iso-Octane ‘ ‘ o l
1200 - e
| | | | |
I

— PRF80

3
®
E
o
g 1100 A
e For many single-stage fuels, trends 3 1
are self-similar, T, varies with T,.. <g* 000
— T, varies significantly with fuel-type. § 900 A
= i i i i i i
e However, DIB (diisobutylene) has 800348 o 3'8' e
. . 5 5 5 5 5
more intense ITHR reactions. Crank Angle [°CA]

e Also, for two-stage PRF80, ITHR

1600 4 — iso-Octane i
reactions more intense after LTHR. ‘

| — PRF80

Heat-Release Rate [J/°CA]

<
g 1200
— Note that HRR never goes to zero 2 1000 -
after LTHR ends. k80— A
6001
. . 400 (i et et
e Examine the effects of ITHR in % 204 -y
more detail for iso-octane (single- [ = oy A X
-200 +——=—= ;
Stage) and PRF8O (tWO-Stage) 335 340 345 350 355 360 365 370 375 380

Crank Angle [°CA]
(Hwang et al., C&F 154(3), 2008)



Retarded Combustion Allows Higher Loads

()

Nat. TS in the bulk gas significantly

slows the combustion rate.

High-load op. still limited by knock.

Retarding combustion phasing
reduces PRR & ringing intensity.

Allows higher fueling = stab. limit

Timing retard amplifies the benefit

of a given thermal stratification.
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Combustion Retard Relies on ITHR

e Allowable CA50 retard limited by

combustion stability.

— Must maintain positive temperature
rise rate (TRR) before hot ignition.

— Lack of sufficient TRR causes
combustion to become unstable

and eventually misfire.

Temperature [K]

e Fuels with stronger ITHR, e.g.
PRF80, produce higher TRR.

— Can sustain more CA50 retard.

0.02
02‘, 0.015 -
>,
v 0.01-
I
S 0.005 - ‘
5 |
T U |
'0-005 : 1 1 1 1 1

335

345 350 355 360 365 370

Crank Angle [°CA]

(Sjéberg and Dec, Proc

[K]

Mass-Averaged Temp

1300 ‘ ‘ ‘ - .
-- T350=987.5K + 1.9K | ,';
1250 7 —7T1350=9875K | I i
~- T350 =987.5K - 1.9K | I
1200 7 . Run-Away Temperature | I T ;if |
1150 4| —- T350=9743K+1.9K | i ]
— T350 = 974.3 K )
1100 4 -- T350=974.3K-1.9K k- AN
T y i
950 === - e oo © | Model, =038 | -
900 L l l l l l
345 350 355 360 365 370 375
Crank Angle [°CA]
1100 ‘ ‘ ; ‘ ; 7
— —ISO-OCTANE|, | | /
1050 o i e E I
— PRF80 TDC

340
. Combust. Inst. 2007)

345 350 355 360

Crank Angle [°CA]

365

370



Combustion Retard Relies on ITHR

—e— jso-Octane
—=— PRF80

[2%] Bd3NI Jo "AeQ "PIS

Stability

= More retarded CA50 with Good
= Reduced HRR

= Higher loads without knock

Strong ITHR
= High TRR

367 369 371 373 375 377
50% Burned (CA50) [°CA]

365

370

1100

i
o
To]
o

~

1000 A

—

o

Ignition He

Pre

0.02

0.01 A
0.0054

[V2./r] ¥H 303 / Y¥H

700

1]

- O
(40]
@

- r—
M g

o
o
R

L B o

)
[
OA

L B

L
| =8
o

Tp)

- <t
(40]
o

- <
(40]
0
(4p]
(40]

(Sjoberg and Dec, Proc. Combust. Inst. 2007)

335 340 345 350 355 360 365 370
Crank Angle [°CA]



Intake Boosting Enhances ITHR of Gasoline @

e For dilute combst. like HCCI, intake-
press. boost required for high loads.
= Enhances ITHR of gasoline.

— Remains as single-stage ignition.
— Allows considerable CA50 retard
with good stability.

e For P,, =200 kPa, CA50 retard can
be > 379°CA.

— 6°CA more than for P,, = 100 kPa.
— Allows significantly higher IMEP,,.

e As a result, very high loads can be
reached with boosted gasoline HCCI.

— IMEP, = 16.3 bar at P;, = 3.25 bar.
— E10, IMEP, = 18.1 bar at P,, = 3.4 bar.

— Approaching loads of conventional
diesel engines.

e Enhanced ITHR with boost is the
key to high-load operation with
premixed fueling, using gasoline.
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Intake Boosting Enhances ITHR of Gasoline @

e For dilute combst. like HCCI, intake-
press. boost required for high loads.
= Enhances ITHR of gasoline.

— Remains as single-stage ignition.
— Allows considerable CA50 retard
with good stability.

e For P,, =200 kPa, CA50 retard can
be > 379°CA.

— 6°CA more than for P,, = 100 kPa.
— Allows significantly higher IMEP,,.

e As a result, very high loads can be
reached with boosted gasoline HCCI.

— IMEP, = 16.3 bar at P;, = 3.25 bar.
— E10, IMEP, = 18.1 bar at P,, = 3.4 bar.

— Approaching loads of conventional
diesel engines.

e Enhanced ITHR with boost is the
key to high-load operation with
premixed fueling, using gasoline.
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Can Biofuels Give Similar Performance? @
Iso-Pentanol and Ethanol M' 001

_ _ —Is&-PentanéI | | ; |
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biofuel = process developed by JBEI. = 0.006 - — ‘ =
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. . I R = 4
e [so-pentanol shows gasoline-like 5 | | | H
ITHR, naturally aspirated. =
— Greater than ethanol. T
'0002 1 1 1 1 E 1

e ITHR of iso-pentanol is significantly o os o0 e a0 = o
enhanced by boost, similar to gasoline. Crank Angle relative to CA10 [CA]
— Provides good stability with significant (Yang et al., SAE 2010-01-2164)

t|m|ng retard. 0.01 Gasoline, Pin = 200 kPa, 31% EGR
0.008  — — Gasolne, Pin - 100 P T = 141:C. |

e Allows a substantial increase in load 3 — — Iso-Pentano, Pin = 100 kPa, Tin = 132C |
with boost = like gasoline. EO'O% | R R
T 0,004 - . Aemeeer

e Ethanol shows no enhancement g L |

in ITHR with boost. : 00027
— Not as good for high-load HCCI. 0

e |so-pentanol closely matches gasoline - . . . .
ihili -30 -25 -20 -15 -10 -5 0

performance = good compatibility. Grank Angle offset by CA10 [FCAJ

e Engine compatibility must be considered in developing new biofuels/blends.
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®d-Sensitivity of Gasoline and ITHR

L

e Isolate fuel-chemistry effects from 371
thermal effects, use Fire19/1 technique. ;;,
— Dec & Sjéberg SAE 2004-01-0557. 369
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(Dec et al., SAE 2011-01-0897)

e High ¢-sensitivity of gasoline with boost offers the possibility of using
mixture stratification to reduce the HRR and allow higher loads.




Controlling the HRR with Mixture Stratification @

e Potential to reduce HRR beyond TS = Higher loads & Higher efficiency.

e Two requirements must be met for mixture stratification to be effective:

1) ¢-Sensitive Fuel 2) Appropriate ¢-Distribution
365 T ‘ ‘ Fire F19/1-Experiment
" | Const. Wall and Residual Temp. Fully Premixed
364 - | |
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Equivalence ratio —
Sjoberg and Dec, SAE 2006-01-0629

e PRF80 is strongly ¢-sensitive (high ITHR), iso-octane is not (weak ITHR)

Dec and Sjoberg, SAE 2004-01-0557

e Partial fuel stratification (PFS) = most fuel premixed, up to 20% late DI.
1. Provides sufficient stratification.
2. Good air utilization with leanest regions burning hot enough for good comb.



Advantages of PFS for Boosted Gasoline, P;, = 2 bar @

e Increase PFS by increasing the DI1%.
— Greatly reduces HRR, PRR and ringing.

e PFS allows significantly higher loads.
— Premixed = IMEP = 11.7 bar, ¢, = 0.47

e Thermal Eff. is higher for the same load. 600 1 —ée%Di @ 300°cA

— PFS = IMEP, = 13.0 bar, ¢, = 0.54

— Approaching O, availability limit (0.9%).

— More advanced CA5S0.
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e Ultra-low NO, and soot.

e Using PFS to exploit ¢-sensitivity
provides substantial advantages.

e Important to understand the |-T
chemistry that allows this operation.




Summary and Conclusions @

e Advanced low-temperature compression-ignition engines such as HCCI
offer substantial advantages for high-efficiency, low emiss. & moderate cost.

e Early autoignition chemistry is critical for the operation of these engines.
— LTHR=760<T<870K
— ITHR =900 < T <1050 K

e |ITHR varies significantly with fuel type even when no LTHR is present.

e Magnitude of the ITHR is critical for allowing sufficient combustion-phasing
retard to prevent engine knock.

— ITHR must be sufficient to keep a positive TRR during the early expansion.

e [ntake boosting greatly increases the ITHR of gasoline allowing very high
loads without knock and with good stability = up to IMEP = 16.3 & 18.1 bar

— Enhanced ITHR also found with the biofuel iso-pentanol, but not with ethanol.

e Amount of ITHR also correlates with the ¢-sensitivity of the fuel.
— ¢-Sensitivity allows the use of PFS to significantly reduce the HRR & PRR.
— Provides higher loads and higher efficiencies.

e A more complete understanding of I-T chemistry at engine conds. is needed.



