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Motivation  

• Hundreds of molecules have been proposed as new alternative 
fuels, many from biology. 

– How to assess which are worth pursuing? Not practical to run them all in 
comprehensive engine tests. Small scale expts and calcs instead? 

– Full engine experimental campaigns would require manufacturing large amount of 
each proposed new fuel and fuel blend… 

• Many new engine designs in development, not clear which 
engine to use to test future fuels.  

– Experimentally building/testing each new engine is expensive and slow; fuel-in-
engine experiments are relatively expensive and unreliable. 

• Fuel needs to work over broad range (T, P, composition).  
– Hard to experimentally test over the whole range of conditions.  

 

Ability to predict behavior of new fuels at many 
conditions, and in proposed engine designs, would 

be very valuable! 



Goals / Philosophy 

• Develop capability to predict fuel performance! 
– Faster, cheaper than testing all fuels at all conditions 

– How Accurate are Predictions? (And what accuracy is required?) 

• “Right answers for the Right Reasons” 
– Consistent rate coefficients, don’t force fits.  

– Everything quantitatively correct:  

• CFD, numerics, error bars, … 

• Develop effective strategy that can be used for other fuels 
– Improve model-construction and validation technology  

– Methods for effective long-distance collaboration across disciplines 

• This is not just about butanol! 



Where this Talk fits in to CEFRC effort 



Why butanol as our test case? 

• CEFRC wanted a single focus from the outset, to draw the geographically 
scattered team together. 

• Why did we choose Butanol as our starting point? 

– Real-World Impact: n-butanol or iso-butanol expected to be 
commercialized soon in USA to beat ethanol “blending wall” and 
satisfy RFS2 standard 

– Small: convenient for quantum, mechanism builders/solvers 

– Volatile: convenient for experiments 

– Realistic: exhibit complications expected in other biofuels, e.g. 
isomers, multiple conformers, k(T,P), second O2 addition. 
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• Ignition Delays 
– Shock tube (Stanford, RPI, Galway, Aachen) 
– Rapid compression machine  (U.Conn.) 

• Flame Speeds & Extinction Strain Rates 
– spherical and flat flames (USC, Princeton) 
– Turbulent flame balls (Princeton) 

• Individual Rate Coefficients  
– Shock Tube (Stanford) 

• Speciated Data from: 
– Flames (Yale, Princeton, USC, Bielefeld, Hefei, ALS) 
– Flow reactors  (Ghent, Princeton) 
– Jet-Stirred Reactors (France) 
– Rapid Compression Facility  (U.Mich.) 
– Species time profiles in shock tube (Stanford) 
– Single-pulse shock tube (NIST) 

We test our butanols model against all these experiments 

Many Experimental Data on Butanol 
Combustion/Oxidation/Pyrolysis;  
majority measured by CEFRC team in 2010-2011 
 



Our Model Development Process 

• Computer assembles large kinetic model for particular 
condition(s) using rough estimates of rate coefficients. (open 
source RMG software) 
– Start from model derived for other conditions, so appending new 

reactions and species.  

– Automated identification of chemically activated product channels, 
and computation of k(T,P). 

• If sensitive to k derived from rough estimate, recompute that 
k using quantum chemistry. 
– Generalize from quantum to improve rate estimation rules. 

• Iterate until not sensitive to rough estimates.  

• Compare with experiment.  
– Big discrepancies? Look for bugs or typos. 

• Match OK? Repeat for different conditions. 



RMG algorithm: Faster pathways are 
explored further 
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RMG software originally 
developed by a separate DOE BES 
grant (Chemical Physics 
program). 

“Current Model” inside. 
RMG decides whether 
or not to add species to 
this model.  
Final model typically 
~500 species, 5000 rxns 

Before: 

After: 



Reactions faster than thermalization: 
 Initial product immediately reacts 
 
    Thermalization rate increases with pressure: k(T,P) 
 
    A+B can lead to many possible products due to “well skipping” 
    RMG automatically tracks down all the channels. 
 
 Example: H-catalyzed keto-enol tautomerism of propenol 

Chemical Activation is a major complication 

Instead of 2 possible products, 10 are formed. Instead of 2 TS’s, must compute 16 TS’s. 



Large Models built by combining many 
components 

• “Foundation Fuels” small molecule chemistry 

– Big molecules break down to small ones! 

– Many observables are most sensitive to the small molecule reactions 

– We start from the high-accuracy H2/O2 model of Ju, Dryer & Klippenstein 

• Biofuel chemistry involves intramolecular (and intermolecular) H-bonding; 
many molecules and transition states have multiple conformations. 

– Conventional approach was separable rotor approximation: V =  Vn( n) 

– Green: separable approx is not accurate! 

– Truhlar invented MS(T) method   

• Quantum chemistry is key for important steps 

– CCSD(T), CASPT2, MRCI… for large molecules! 

• Functional Group extrapolations fill in the rest 

 



2009 model way off: did not predict fast  
n-butanol ignition <900 K! 

Model was built automatically at 
MIT using computer “expert  
system” at the outset of the 
project (Aug 2009), no butanol-
specific inputs (quantum nor 
expt). 
 
Due to bug in reaction 
classification system used by 
expert system, initial model wildly 
mis-estimated barriers for all R + 
H2O2 = RH + HO2 reactions. 
 
Experimental validation is 
Critical… in this case,  
bug identified immediately 
by Weber & Sung RCM expt. 



After removing the bug in 2009 model,  
2010 model predicts reasonable ignition delay  

Models were built automatically 
at MIT using computer “expert  
system”, no butanol-specific 
inputs (quantum nor expt). 
 
Due to bug in reaction 
classification system used by 
expert system, 2009 model wildly 
mis-estimated barriers for all R + 
H2O2 = RH + HO2 reactions. 
 

Experimental validation is 
Critical… in this case,  
bug identified, rectified 
in less than 2 months. 
 
Model & expt still not quite in 
agreement for low T ignition 
 



No adjustment of parameters to match  
experiments we are modeling 

• Main Goal: Assess how accurately we can predict 
chemistry of new fuels 

– …and which quantum chemistry calculations or experiments 
would be most helpful. 

• Too many parameters in most biofuel models for 
adjustment-to-fit-experiment to be sensible 

– Very different from small-model situation e.g. H2/O2 

• Model improved by doing better k(T,P) calculations based 
on higher levels of quantum chemistry & rate theory (see 
next talk and posters). 

 We do not expect perfect agreement: currently feasible quantum calculations  
for rate coefficients are typically uncertain by factor of 2-3, so expect comparable errors in 
model predictions  



BUTANOL PYROLYSIS 
Ghent Flow Reactor, Stanford and NIST Shock Tubes,  
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1-Butanol

iso-Butanol

2-Butanol

tert-Butanol

Butanol model’s predicted conversion agrees 
well with ~1000 K flow-reactor pyrolysis 
measurements 

16 

Exptl Data from Van Geem et al. 
  University of Ghent 
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1-Butanol (1-Butene)

iso-Butanol (iso-Butene)

2-Butanol (1-Butene)

2-Butanol (2-Butene)

tert-Butanol (iso-Butene)

Model predicts most products quantitatively,  

e.g. butene isomers from various butanols 

Experimental  Data, Univ. Ghent 
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But model generally overestimates benzene… 

…Something odd with t-butanol… 

Model also 

 missing 

some 

polycyclic 

aromatic  

(and Soot) 

formation…. 
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Experimental  Data, Univ. Ghent 



Stanford Multi-Species Time-Profile 
Experiment 

• Most experiments measure either a single observable at 
many times (Ntimepoints), or many species at a single time 
(Nspecies). 

• New Stanford experiment measures several species at many 
times: (Ntimepoints*Nspecies) data  

• Great for thoroughly testing the kinetic model! 

Stanford Shock tube 



2010 model predictions not so good for 
OH and H2O formation from fast pyrolysis   

Initial Model Predictions (no quantum calcs) 

Stanford group multispecies experiments:   Cook R. et. al, Multi-Species Laser Measurement of n-Butanol Pyrolysis 
behind Reflected Shock Waves, Int. J. Chem. Kinet., 2012 (accepted). 

OH concentration 

H2O concentration 1/3rd of peak conc  

factor of 2 



H2O formation sensitive to butanol bond 
scission and dehydration 

Early Times ~ 10-9 sec 

Stanford pyrolysis 
of n-butanol 

t=3 s 

dehydration 

Bond scissions 

So… Klippenstein computed bond scissions, and  

 MIT computed dehydration using quantum chemistry. 



nBuOH Pyrolysis Model, with quantum k(T,P): 
predictions much closer to experimental data 

Expts: Stanford 

Model: MIT + Klippenstein  

H2O 

Several new experiments and calculations have been done to 
try to resolve this discrepancy (Hanson, Rosado-Reyes & Tsang, 

Alecu, Klippenstein, Truhlar) 
About a factor of 2 discrepancy for some rate coefficients, 

about what we would expect 

Expts: Stanford 

Model: MIT + Klippenstein  

OH 



BUTANOL IN FLAMES 

MBMS: Advanced Light Source 

MBMS: Bielefeld, China 

Flame Speeds measured at USC and Princeton 
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tert-Butanol
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iso-Butanol
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2-Butanol
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Flame Speed predicted pretty well by all the models 

This data 
from USC. 
Related  
expts  
done at 
Princeton, 
with different 
geometry and 
strain rate. 
 
Cross- 
Comparison 
of expts  
clarified, 
confirmed 
strain-rate 
extrapolation 



Advanced Light Source (ALS) Flat Flame Data:  
Detailed Test of the Model’s Predictive Capabilities 

Hansen, Harper, Green PCCP (2011) 

 Mole fraction profiles of the major species are 
predicted accurately 

 A more powerful test is provided by 
comparing modeled and experimental profiles 
of intermediate species 

Profiles have not been shifted 

Oßwald et al. flame data need to 

be shifted for better agreement 

Only a few of the many data traces shown here… most show good agreement 
  

Oßwald, Güldenberg, Kohse-Höinghaus, Yang, Yuan, Qi, Combust.Flame (2011)158, 2   



You learn more from discrepancies!   
 C4H4 and C3H3 overpredicted 

 
Sensitive to mistake in C4H5 Thermochemistry 

 Simulations of the ALS flames are sensitive to the enthalpy of i-C4H5  
(CH2=CH-∙C=CH2  ∙CH2-CH=C=CH2) . None of the other available experimental 

data are sensitive to this number. 

 This radical’s enthalpy value was incorrect in the MIT database. Correcting to 
the accepted literature value partially resolved the discrepancy. 
 

Still a  

problem 

C3H3 CH2CHCCH 



 Updated Quantum k(T,P) for H-catalyzed keto-enol 
isomerization  resolves some discrepancies for enols.  

Data from 
Nils Hansen 
rich 
isobutanol 
flat flame 
Measured 
at ALS. 
 
MIT model 
(2012) 
predictions. 
All existing 
models 
mispredict 
some enols. 

isobutanal 

isobutanal 

sum of butenol 

isomers: still 

overpredicted  

 

sum of propenol 

isomers: good 

agreement 

propanal 



Predict propyl and CH3O radicals as accurately as 

 we can measure them (isobutanol flame, 2012 model) 

CH3O 

C3H7 

CH2O 



But discrepancies of about a factor of 2 
are common, as expected 

propene 

isobutene 

Hansen, Merchant, Harper, and Green (about to be submitted)  



IGNITION DELAY 
  A CRUCIAL PART OF FUEL CHEMISTRY 

Stanford Shock Tube, RPI Shock Tube and Univ. Conn. RCM 

Stranic I. et. al, Shock tube measurements of ignition delay times for the butanol isomers, Combust. Flame, 2012, 159 (2),  516-527. 

Moss J. T. et. al, An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol, J. Phys. Chem. A, 2008, 112 (43),  10843–10855. 



Very important fuel performance 
property: ignition delay 

• Gasoline “Octane Number” 

• Diesel “Cetane Number” 

• Small changes in fuel make big changes in ignition:  

• sensitive to molecular structure! 

• New engines even more sensitive to ignition 

– Potential for big gains… 

– … but only if the fuel ignition delay  matches 
engine requirements 

 



High T isobutanol ignition delay: 
model predictions consistent with recent 
experiments by Stanford group 

Stranic et al., Combust. Flame, 2012, 159 (2),  516-527. 

Model Predictions quite close to experiment, better than factor of 2: 
lucky? Sensitive to Foundation Fuels rates: some H2/O2 rate coefficients 
very accurate 



Model agrees with most low T oxidation  
expts (e.g. iso-butanol Jet-Stirred Reactor) 

C. Togbé et. al,, Energy Fuels, 2010, 24, 5244-5256.   [Dagaut group, Orleans] 

isobutanol CH4 

C2H4 

H2O 

CO2 

CO 

CH2O H2 

CH3CHO 

isobutene 

C2H2 

C2H6 



2012 model accurately predicts ignition 
delay of stoichiometric iso-butanol/air 
mixture, even at 750 K 

Experiments of Weber et al., model of Merchant et al. 
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But all models wildly mispredict [O2] effect 

on low T ignition of n-BuOH !! 

Exptl Data (Solid symbols)  
Bryan Weber & 
C.J. Sung, U.Conn. 
 
MIT model (open symbols) 

CEFRC chemistry theory 

team is pursuing several 

different angles, including 

new chemistry.   

See next talk.  



USC flame speeds 

Princeton flames 

Compare; Resolve 
 Strain Extrapolation 

Stanford ignition delays 

U.Conn. Ignition delays 

Repeat, Correct 
Literature expts 

MIT builds 1st model  

U.Conn. expt 
reveals bug  
in database 

Klippenstein rate calcs 

Truhlar invents  MS(T) 
for coupled torsions 

Dryer builds H2/O2 model 

Ghent pyrolysis expts 

New rate resolves 
High P discrepancy: 
Good H2/O2 model 

Dryer & Ju t-butanol expts  

MIT builds 
 2nd butanol 
model  

Stanford invents 
time-resolved 
pyrolysis expts 

NIST pyrolysis expts 

Hansen ALS expts 

Truhlar, Klippenstein, 
Green cooperate on rate 
calculations w/ Fellows 

ALS expt  
reveals 
bad C4H5 

thermo 

MIT builds 
3rd butanol  
model 

4th CEFRC butanols 
model  about  to be 
submitted to journals  

CEFRC Butanol Thrust: First 2.5 years 

LLNL 
Builds 
Butanol 
model 



Predicting Alternative Fuel Chemistry: 
Technical Capability Today 

• Big comprehensive detailed combustion chemistry models 
can be built pretty quickly. 

– Current capability: ~500 species, ~10,000 rxns in final model. 

– Current database: C,H,O + some Sulfur 

• Iterative refinement using quantum chemistry is not automated, takes a 
few months. Challenging for large molecule  (> 10 carbons) reactions (but 
see recent advances in CEFRC by Carter). Possible to automate, run in 
parallel?  

• P-dependence and hindered rotor / multiple conformation issues are 
significant sources of error in computed k’s. CEFRC has made important 
advances, but more work is needed. 

• Comparison with published experiments is often difficult, primarily 
because complete kinetic data is not routinely available in useful electronic 
formats. Very nice to work in a collaborative team! 

 



Predicting Alternative Fuel Chemistry: 
Accuracy Today 

• Predictions from kinetic models based on quantum chemistry 
+ rate estimates are semi-quantitatively accurate for wide 
range of combustion/oxidation/pyrolysis experiments. 
– without any adjustment to match experiment 

• Occasional big errors due to bugs, holes in database, or missing 
reactions 
– Discrepancies identify holes in understanding 

• Low T ignition delays 
• PAH formation around 1000 Kelvin 

– Experiments and team-mates great for catching errors! 
• As we eliminate the big errors, starting to reach accuracy limits 

of current quantum chemistry.  
- Better experimental numbers coming (e.g. from Hai Wang, 
Greg Smith, Ron Hanson, Fred Dryer, Michael Burke & SJK) 
– Quantum chemistry/rate calculations continuing to improve 

(e.g. Carter, Klippenstein, Truhlar) 



QUESTIONS/COMMENTS? 


