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Similarity of Flame Kinetics of

Large n-Alkanes




Motivation

Davis & Law (1998)
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Fuel similarity in terms of flame speed demonstrated at 1 atm by Davis
and Law (1998) for n-C4 to -C7 hydrocarbons

Ji et al. demonstrated fuel similarity for n-C to -C,, at1atm
Does fuel similarity still hold at elevated pressures?

» Elevated pressures change chemical kinetics, increasing the
frequency of three-body reactions

High pressure relevant for practical engine conditions

Examine fuel similarity in the flame structure




Constant & High-Pressure Chamber
for High-Pressure Flame Studies

« Unique chamber design allows well-controlled study
of expanding spherical flames in constant, high-
pressure (up to 60 atm.) environment.




Flame Speed Similarity of C to Cq4
n-Alkanes at Elevated Pressures
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Similarity in Profiles of
Heat Release and Temperature

* Nearly identical heat
release and temperature
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Flame speed primarily
depends on the adiabatic
flame temperature, which is
nearly identical for all fuels
studied
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Similarity in Profiles of Decomposed Fuel
Species and Reactions

Species Profiles Reaction Progress
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Similarity in Profiles of (Small Species)
Radical Concentrations and Reactions

Species Profiles Reaction Progress
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Interim Summary

» Experimental laminar flame speeds of C. to Cg
n-alkanes almost identical at atmospheric and
elevated pressures

« Computation shows almost identical profiles for:

— Concentrations of decomposed fuels species and
their further reactions in the preheat zone

— Concentrations of small molecule species and their
reactions in the active reaction zone




Flame Kinetics of Cycloalkanes




Interest in Cycloalkanes

To what extent is fuel similarity of n-alkanes carried over to
other hydrocarbon fuels?

Cycloalkanes are major components of fuel blends

Ji et al. 2011 found: cyclohexane > n-hexane > mono-
alkylated CH; difference seems to be caused by fuel
cracking process

SO eH

cyclohexane methyl-CH ethyl-CH
Same trend holds at higher pressures?
Further contrast difference between different fuels



http://upload.wikimedia.org/wikipedia/commons/2/22/Methylcyclohexane-2D-skeletal.png

Experimental and Calculated
Flame Speeds

55

I atm

d
n

5 atm

5 atm

2
)

Flame Speed (cm/sec)
Flame Speed (cm/sec)

cyclohexane/air
353K 1 methyvl-cvelohexane/air
353K

0.9 1.1 1.3 . . 7 0.9 1.1 1.3

Equivalence Ratio, ¢ Equivalence Ratio, ¢

evelohexane

methyl-cyclohexane

e
A

5 atm

[
W

Flame Speed (cm/sec)
Flame Speed (cm/sec)

) Oxidizer: 15% mol O,/83% mol He ;
ethyl-cyclohexane/air 353 K20 atm

353K

T T T 6 . 1.0 1.2
0.9 1.1 1.3

Equivalence Ratio, ¢

/A Jietal 2011 Calculation: JetSurF 2.0

Equivalence Ratio, ¢




Comparisons at Elevated Pressures:
Experiment
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Comparison at Elevated Pressures:
Calculation

Initial Temp: 353 K
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= Simulation by JetSurF 2.0 shows similar trend




Assessment of Differences
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= Difference increases with pressure: 5% at 1latm, 13% at 10 atm




Assessment of Thermal Effect

= |dentical flame temperature for cyclohexane and mono-alkylated CH

= n-hexane lower by 10 K at maximum

Initial Temp: 353 K
Pressure: 1 atm
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Assessment of Thermal Effect

» Thermal effect explains the difference between n-hexane
and cyclohexane at 1 atm (Ji et al.), but not at 10 atm

» Suggesting a kinetic reason
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Assessment of Kinetic Effect
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= Distinctive heat release profile for cyclohexane




Assessment of Kinetic Effect

= Key termination reaction for hexane and methyl-CH
aC;H+H+M — C;H, + M
which increases with pressure
= Cyclohexane cracks into much more C, and C, than C,.

- Dominant role of -Scission
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Assessment of Kinetic Effect

= Not so for methyl-CH
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Interim Summary on Cycloalkanes

® Acquired flame speed data for cyclohexane, methyl-CH and ethyl-
CH from 1 atm to 20 atm

® Good agreement with JetSurF 2.0 mechanism at all pressures
® Slight over-prediction of JetSurF 2.0 at 1 atm

® Revealed the trend for flame speed: cyclohexane > n-hexane >
methyl-CH = ethyl-CH with relative difference 5% at 1 atm, 13% at

10 atm

® Computed flame structure and sensitivity analysis reveal that
cracking of cyclohexane favors C,, C, over C; fragments

®" The special feature of cyclohexane can be explained by its
symmetric structure and the general applicability of -scission rule

21




A PSR Study on Effects of Surrogate Fuel

Composition on Ignition and EXxtinction

Tianfeng Lu

University of Connecticut




S-Curve of PSR for Jet Fuel
Surrogates (1/2)
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 Large n-alkanes feature mostly
identical S-curves

 Pure n-alkane, cycloalkanes, and
aromatics feature different ignition
and extinction states

Mechanism: JetSurF 2.0
Inlet condition:
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S-Curve of PSR for Jet Fuel
Surrogates (2/2)

Inlet condition:
T., = 1000K
p =10atm
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 Small amount of aromatics
has little effects on either the
ignition or the extinction
states
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Controlling Reactions for Ignition/Extinction
(80% n-Dodecane + 20% Toluene) |

——n-dodecane
n-dodecane : toluene = 8:2
n-dodecane : toluene = 1:1
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Both ignition (high-T) and
extinction are determined by
reactions involving small
molecules (H, CO, C1-C3)

A “low-dimensional manifold”
may exist for high-T chemistry
of large hydrocarbons

Extinction State
HCO+H = CO+H2
H+02(+M) = HO2(+M)

H+OH+M = H20+M

H+02 = O+OH

CO+0OH = CO2+H

Mixing

Ignition State
HO2+HO2 = 02+H202
HO2+0OH = H20+02
C2H3+02 = CH2CHO+0O
CH3+HO2 = CH30+0OH
OH+OH(+M) = H202(+M)
C2H4+0H = C2H3+H20
aC3H5+HO2 = OH+C2H3+CH20

Mixing




Interim Summary on PSR Study

Pure components of jet fuel surrogate (e.g. n-alkanes, cyclo-
alkanes, aromatics) may feature dramatically different
Ignition/extinction states

Small amount of aromatics in n-alkanes has little effects on
either ignition or extinction states

Reaction pathways involving small molecules control ignition
(high-T) and extinction of jet fuels

A “low-dimensional manifold” may exist for chemistry of
large molecules for ignition (high-T) and extinction






