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Overall Objective 

Establish diesel surrogate fuels:  

• As time-invariant, realistic reference fuels 

• To better understand fuel-composition 

and property effects on engine processes 

• Ultimately to enable computational engine 

optimization for evolving real fuels 
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● Target fuel  

▬ A “real” fuel with selected properties that  
are to be matched by a surrogate fuel 

● Surrogate fuel  

▬ Fuel composed of a small number of pure compounds  
that is formulated to match selected properties of a  
target fuel 

● Design properties  

▬ Selected properties of the target fuel that are  
to be matched by the surrogate fuel 

● Surrogate palette  

▬ The set of pure compounds that  
are blended together to create a  
surrogate fuel 

Terminology 
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Surrogate Formulation Process Overview 
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● FD9A = CRC FACE Diesel #9, Batch A 

Target Fuels: FD9A 

Anomalously high levels of C8 and C9 mono-aromatics 

Source: GC-FIMS and 
PIONA data from 
CanmetENERGY 
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● CFA = 2007 #2 ULSD Emissions Certification Fuel, Batch A 

Target Fuels: CFA 

CFA exhibits a more-typical distribution of HC type with carbon # 

Source: GC-FIMS and 
PIONA data from 
CanmetENERGY 
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● Quantified using 13C and 1H nuclear magnetic resonance (NMR) 
spectroscopy techniques 

● NMR data give structural information on a per-carbon-atom 
basis, whereas GC techniques give info on a per-molecule basis 

 

 

 

 

 

● Surrogates based on more-accurate structural information from 
NMR characterization are expected to better match target-fuel 
combustion chemistry and emissions  

● Measurements conducted at CanmetENERGY (H. Dettman) and 
PNNL (J. Franz) 

Surrogate Design Properties: Composition 

GC: “This is an aromatic molecule.” 

NMR: “37.5 mol% of the carbon in this molecule 
has aromatic characteristics. The rest has 
linear-alkane characteristics.” 
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Carbon Types from NMR Analysis 

Not found in market 
diesel fuels 
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● Ignition quality 

▬ Quantified using derived cetane number (DCN) per ASTM D 6890 

▬ Measurements conducted using IQT at NREL (M. Ratcliff) 

 Excellent repeatability 

 

 0.7 DCN vs. method repeatability 

 

 2.6 DCN 

● Volatility 

▬ Quantified using advanced  
distillation curve (ADC)  

 Developed by T. Bruno  
and co-workers at NIST 

▬ Superior to ASTM D 86 

 ADC gives actual thermo- 
dynamic state points,  
analogous to normal  
boiling points  

 D 86 vapor temperatures  
underpredict liquid boiling  
temperatures 

 

Surrogate Design Properties:  
Ignition Quality and Volatility 
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Surrogate Palette, “Version 1”  

Not very representative  
of diesel iso-alkanes 

Version 1 palette contains all of the major hydrocarbon 
classes that are present in the target fuels 
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● Approach developed at NIST (M. Huber) 

● Minimizes objective function S,  

 

 

 

where NCT is the number of carbon types, NADC is the number of 
ADC points, each W is a weighting factor, and each F is a 
normalized difference between predicted and target values 

● Assumes DCN of mixture = volume-fraction-weighted sum of 
DCNs of palette compounds 

▬ This is a reasonably accurate assumption (see Slide 15) 

● ADC calculated using an equation-of-state based mixture model 

Regression Model 
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● MT = Measured for Target fuel, PS = Predicted for Surrogate fuel 

● Carbon Types 6-10 are well matched  

▬ Agreement of other carbon types could be improved 

Composition Matching: CFA 
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● Same trends evident with FD9A as were seen with CFA 

▬ Too much n-alkane C (CTs 1&2) and quaternary aliphatic C (CT11) 

▬ Not enough iso- and cyclo-alkane C (CTs 3-5) 

Composition Matching: FD9A 



 = 4.0  = 3.4 
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● Initially, Measured Surrogate (MS) DCNs were 3.4 to 4.0 numbers 
higher than MT values 

● Passing surrogates through baked silica gel (i.e., “silica-gel 
treatment,” SGT) mitigated this issue somewhat 

▬ Presumably, ignition-accelerating contaminants were removed 

Ignition-Quality Matching 

 = 2.2 
 = 1.2 
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● Volume-fraction-weighted estimate is closest to measured value 

● Other potential causes of DCN disagreement 

▬ Non-linear blending effects 

▬ Uncertainties in palette-compound DCNs 

Evaluation of Volumetric Linear Blending 
Assumption for DCN Prediction 
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● Surrogates have higher initial boiling temperatures, but lower 
temperatures across rest of distillation curve 

● TMT – TMS peaks in temperature range that does not contain 
palette-compound boiling points (247 – 286 

 
C) 

Volatility Matching 
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● Two 8-component diesel surrogate fuels were created 

● Each surrogate contains all of the major hydrocarbon classes 
found in its corresponding target fuel 

▬ n-alkanes; iso-alkanes; mono- and di-cyclo-alkanes; mono- and di-
aromatics; and naphtho-aromatics 

● Good matching of property targets was achieved 

▬ 5 of 11 carbon types were matched within 

 

 3 mol%, error in others 
averaged 7.3 mol% 

▬ Surrogate DCNs averaged 3.9% higher (post silica-gel treatment) 

▬ Surrogate ADC points averaged 2.1% lower 

▬ Surrogate densities averaged 4.1% lower 

● Good matching of other properties also was achieved 

▬ Molar C/H ratio within 3.4%, net heat of combustion within 0.6%, 
smoke point within 2-mm repeatability of the test method 

Summary 
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● Awareness of ignition-accelerating contaminants is important 

▬ Silica-gel treatment (or similar) is recommended for groups 
measuring ignition delays in other venues (shock tubes, RCMs,…) 

● Final paper is available (free) from 

▬ http://www.crcao.org/publications/advancedVehiclesFuelsLubricant
s/index.html; click on “CRC Project No. AVFL-18” link 

▬ Or go to http://pubs.acs.org/doi/abs/10.1021/ef300303e  

Summary (cont’d) 

http://www.crcao.org/publications/advancedVehiclesFuelsLubricants/index.html
http://www.crcao.org/publications/advancedVehiclesFuelsLubricants/index.html
http://www.crcao.org/publications/advancedVehiclesFuelsLubricants/index.html
http://www.crcao.org/publications/advancedVehiclesFuelsLubricants/index.html
http://pubs.acs.org/doi/abs/10.1021/ef300303e
http://pubs.acs.org/doi/abs/10.1021/ef300303e
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Current/Future Work 

● Diesel surrogates 

▬ Refine surrogate-formulation methodology 

 Improved palette 

 Improved property modeling 

▬ Single-cylinder engine testing  

▬ CFD modeling for mechanism validation and/or refinement 
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