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Motivation: changing fuel supply 
• Combustion properties…. 

– are dependent on fuel composition 
– of low-volatility and alternative fuels are less well 

characterized 
 
 

• Shock tube studies as high-pressures for fuel/air mixtures 
(engine-like conditions) 
 

 
• Quantitative targets for the validation of kinetic models 
• Direct comparisons of fuel reactivity 

 
 

Methodology 

Payoff 



Methodology: heated shock tube technique 

• Isolation of homogenous gas-phase kinetics 
 

• Reactants are heated “instantaneously” 
– Zero-dimensional model 
– Temperature and pressure can be accurately determined 

(typ. 1-2% uncertainties) 
 

• High pressures achieved behind reflected shocks 
– Present studies ~7-50 atm 

 
• Extended test times (10 ms) achieved using tailored 

driver gases 
 



Vacuum section 
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Inner diameter = 5.7 cm;  initial temperatures up to 200
 

C 
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P [atm] T [K] τ [ms] φ 
Accessible 1 - 200 650 + 0 - 10 
Typ. for fuel/air 5 - 60 650 - 1300 0.05 - 10 0.25 - 2.0 

Condition Space 



Ignition delay measurement 
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Example results 

Uncertainties: 
±25% in ignition delay 
±1.5% in temperature 
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Example results 
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• Temperature dependence mechanistically explained by models in 
literature 
• Quantitative prediction is a work in progress 
 

Uncertainties: 
±25% in ignition delay 
±1.5% in temperature 
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Experiment vs surrogate modeling 
pressure dependence φ dependence 

Generalizations 
• a priori surrogate kinetic modeling deviates with real fuel ignition delay by 
on average a factor of two – sufficient for “engineering accuracy”? 
 

• Kinetic sensitivities/dependencies much larger in NTC than high-T regime 
• In condition and fuel composition/structure parameter spaces 



Jet fuel ignition variability 
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DCN a proxy for NTC ignition delay? 

The IQT-based DCN 
measurement made is 
at ~830 K and 22 atm 



Ignition delay vs DCN 



Ignition delay vs DCN 

The entrance to the high-T regime 
occurs at higher T with increasing DCN 



Jet fuel composition 
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Conventional and alternative jet fuels contain 
Large quantities of lightly branched alkanes 



Collaborative study of lightly-branched alkanes 

• RPI: shock tube ignition delay 
• Nat. Univ. Ireland Galway: shock tube and 

RCM ignition delay 
• LLNL: kinetic modeling 

 
• Compounds studied: 



C8 alkane comparison 

Compound RON DCN 

2,5-dimethylhexane 56 

3-methylheptane 37 43 

2-methylheptane 22 53 

n-octane -19 64 

At high-pressure fuel/air conditions 
Branching has: 
• little to no influence at high T 
• significant influence in NTC region 
 

→ dependence on number and 
location of methyl substitutions 
 



C8 alkane comparison: T < 1000 K 



Equivalence ratio dependence: 3-methylheptane 

Higher temperatures 
• small φ-dependence; crossover in φ-dependence at 1200 K for 6.5 atm case 
 

Moderate to low temperatures 
• larger φ-dependence 



Crossover in φ-dependence 

• T > 1200 K: ignition controlled by H + O2 → OH + O 
– Increased φ, increased fuel scavenging of H atoms:    

fuel + H → R + H2 
 

• T < 1200 K: H + O2 + M → HO2 + M competes 
– Increased φ, increased radical production:                    

fuel + HO2 → R + H2O2, H2O2 + M → 2OH + M 
 

• Additionally at T > 1200 K: inhibitive decomposition 
 

(+ radical) 

resonantly 
stable 



Observations from C8 alkane isomer studies 

• High temperatures 
– Little to no difference in ignition delay for C8 isomers 

• Similar bond strengths, similar intermediate pool, similar 
reactivity 

– Model captures pressure- and φ-dependence but is ~2x 
longer than measured ignition delay 

 

• Low temperatures 
– Model in better agreement with both RCM and ST data 
– Reactivity dependent on location and number of 

methyl substitutions 



Low-T chemistry: 2-methylheptane vs n-octane 
2-methylheptane n-octane 
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Low-T chemistry: 2-methylheptane vs n-octane 

2-methylheptane n-octane 2-methylheptane: 
slower OOQOOH 
isomerization;  
no H atom 
available at OOH 
site 



Low-T chemistry: 3-methyl vs 2-methyl heptane 

Inhibitive cyclic 
ether formation 
results due to 
slow OOQOOH 
isomerization 
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High-temperature deviations 

At high T&P 
• Sensitive reactions are  
within C0-C2 chemistry and 
fuel + HO2  R + H2O2 
 
• Over prediction 
of alkane ignition delay 
is common among literature 
models 
 



Summary 

• Jet Fuels 
– Ignition delay variability large in the NTC 
– Correlates with DCN  

• Not yet clear how universal this observation is 
 

• Normal and lightly-branched alkanes 
– Number and location of methyl substitutions has a 

strong influence on NTC ignition delay 
– Isomer reactivity differences explained by competition 

among low-T radical branching and propagation 
pathways 

– Perhaps still some issues with high-T alkane kinetics 
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Sensitivity analysis 
3-methylheptane/air, 20 atm, 1100 K 

C0-C2 sensitivity: 
common to all alkanes 
at high temperatures 

H2O2 
formation 
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