Flow Reactor Studies of Surrogate Jet Fuel Reaction Kinetics

C. T. Bowman, A. Bardos and S. Banerjee
Mechanical Engineering, Stanford University

NIST Summit on Fuels, September 8-10, 2008

- Project Objectives
- Experimental Techniques
- Application to Fuel Kinetics Studies
- Future Directions: Flow Reactor Research

Sponsor: AFOSR/USC
Long-Term Stanford Program Objectives

- Build an accurate, multi-target, multi-species experimental database for combustion of *practical jet fuels and surrogates* utilizing a flow reactor and shock tubes.

- Collaboratively develop, evaluate and refine *detailed kinetic mechanisms* for single-component fuels, multi-component surrogate blends, and practical fuels to establish *predictive capabilities* for the kinetics of current and future jet fuels.
Experimental Conditions

- Initial temperatures: 1000 – 1300K
- Pressures: 1 – 20 atm
- Initial n-dodecane: 300 – 3000 ppmv
- Stoichiometry: $\Phi \sim 0.2 - 2.0$
- Residence times: 20 – 150 msec
Fuel Evaporator
Example Results – C_2H_6

$P = 6 \text{ bar}$ \hspace{1em} $T = 1075 \text{ K}$

1750 ppm C_2H_6 \hspace{1em} 7.0% O_2

Supported by the Stanford Global Climate and Energy Project
• Single mixing parameter is determined experimentally
Accomplishments/Future Work

- Fuel evaporator designed, fabricated and tested – no fuel decomposition observed for evaporator temperatures below 150°C.
- Selected and calibrated GC column for n-dodecane.
- Initial experiment to overlap conditions of the Drexel flow reactor experiment but at a temperature of 1100K.
- Flow reactor conditions also overlap the conditions of the Stanford shock tube experiments and will provide complementary data.