Thermodynamic, Transport, and Chemical Properties of “Reference” JP-8 (F1ATA06004G004)

Thomas J. Bruno
Physical and Chemical Properties Division
National Institute of Standards and Technology
Boulder, CO
NIST Boulder Laboratories

Approved for public release; distribution unlimited.
“NIST enables innovation, trade, security, jobs”

NIST helps build the infrastructure for technological innovation.

We’re here to help you with problems related to measurement, standards, data, and technology.

...The Congress shall have Power To...

... and fix the Standard of Weights and Measures;
NIST Staff:

- Tom Bruno
- Arno Laesecke
- Stephanie Outcalt
- Richard Perkins
- Marcia Huber
- Eric Lemmon
- Jason Widegren
and Students:

• Beverly Smith
• Lisa Ott
• Kari Brumbeck
• Amelia Hadler
• Tara Lovestead
Executive Summary:

AFOSR-MIPR F1ATA06004G004
(3/1/06)

• Characterization of a real fuel: JP-8
 – i.e., chemical analysis, \textbf{VLE}, \(\rho \), \(\nu \), \(\lambda \), \(C_v \),

• Standard reference measurement and modeling of fuel palette components.

• Develop a surrogate fluid model for real JP-8

• Relation to the synthetic JP-8 (Fischer Tropsch S-8 model)

• Solubility characterization of additive species
While we must nail down ρ, ν, λ, C_v, etc. to develop a model,

- The volatility of critical importance,

- n-decane: $\rho = 0.73$ g/mL
- n-hexadecane $\rho = 0.77$ g/mL

Granted, I’m hiding the temperature and pressure dependence, but there is not much difference with composition.
Volatility, on the other hand, changes dramatically with composition:
Advanced Distillation Curve Method

Distillation Curve???

For a complex mixture, it is a plot of the distillation temperature against cut fraction

- T vs. Vol
- T vs. 100 mL Volume
- T vs. Volume %
 (sometimes expressed as % evaporated)
ADC:

- An extension of classical (ASTM D-86) methods:
 - temperatures are true thermodynamic state points
 - consistent with a century of historical data
 - temperature, volume and pressure measurements of low uncertainty – EOS development
 - composition explicit data channel for qualitative, quantitative and trace analysis of fractions
 - energy content of each fraction
 - corrosivity of each fraction
 - greenhouse gas output of each fraction
 - thermal and oxidative stability of the fluids
The basics.
The adapter, and the receiver.
Typical data suite for an aviation fuel:

- **FTIR**: Fourier Transform Infrared Spectroscopy
- **SCD**: Sulfur Content Determination
- **MS**: Mass Spectrometry
- **ΔHc**: Heat of combustion

![Graph showing temperature (Tk, °C) vs. volume fraction (%)](image)

Approved for public release; distribution unlimited.
Compressed Liquid Density:
Densimeter

- Anton Paar* DMA-HPM Density Measuring Cell
- Tube material: Hastelloy C-276
- Temperature range: –20 to 200° C
 Pressure range: 0 MPa to 100 MPa
 Density range: 0 – 3000 kg/m³
- Combined overall uncertainty in density: 0.64 to 0.81 kg/m³

*No recommendation or endorsement by NIST is implied.
Thermostated Housing

- Copper pipe with heaters and cooling channels
- Pneumatic valves
- Pre-heat loop on inlet
- 3 PRTs
- Insulation packed inside of and surrounding pipe
Temperature Control

- Thin film and mica heaters
- Three heating zones
- Circulator for sub-ambient temperatures
- SPRT and two 100 Ω PRTs
- Independently run PID loop
- Long-term stability ± 5 mK
- Thermal switches to protect against over heating
Pressure Control

- Programmable Syringe Pump
- Pneumatic valves
- Oscillating quartz crystal pressure transmitter (thermostated to \(\approx 40^\circ C\))
- Rupture discs to prevent over pressurization
Three samples of Jet-A:
and with S-8:
and finally the flightline sample
Density and Speed of Sound
5 °C to 70 °C, uncertainty 0.1%

Viscosity
20 °C to 100 °C, uncertainty 1.5%

- commercial instruments
- scan T-range in 3 hours
- calibration with standard fluids required
- small sample volumes (5 mL)
- contamination possible

Approved for public release; distribution unlimited.
Speed of sound data of jet fuels as a function of temperature at ambient pressure.
Adiabatic compressibility data of jet fuels as a function of temperature at ambient pressure.
Kinematic viscosity data of jet fuel JP-8 3773 flightline as a function of temperature at ambient pressure.
Thermal Conductivity Measurements on Fuels

- Transient Hot-Wire Apparatus at NIST
 - Vapor, liquid, and supercritical fluid phases
 - Temperature Range $30 \, \text{K} < T < 750 \, \text{K}$
 - Pressure Range $0.01 \, \text{MPa} < P < 70 \, \text{MPa}$
 - Less than 0.5% uncertainty for liquids below 450 K
 - Uncertainty increases at high temperatures due to thermal radiation and sample decomposition

- Summary of Measurements on Liquid Fuels
 - Isotherms measured from $300 \, \text{K}$ to $550 \, \text{K}$ with pressures to 60 MPa
 - Significant cracking observed at temperatures above 600 K
 - Accurate thermal conductivity data obtained from $300 \, \text{K}$ to $550 \, \text{K}$
 - Performance verified with argon gas and toluene liquid
Schematic of Hot-Wire Bridge

Diagram:

- Main Power Relay
- Dummy Load Resistance
- Power Supply
- +V/2
- −V/2
- R1
- R2
- R3
- R4
- Imbalance Voltage
- Hot-Wire Bridge
- Ground
- Cell Wall
- Long Hot Wire
- Short Hot Wire

Approved for public release; distribution unlimited.
Hot-Wire Cell and Pressure Vessel
Temperature and Pressure Control
Hot-Wire Measurement
Electronics
Thermal Conductivity of Jet A (3602)

\[\lambda / \text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1} \]

\[P / \text{MPa} \]

Approved for public release; distribution unlimited.
Thermal Conductivity of Jet A
(3638)
Thermal Conductivity of Jet A (4658)
Thermal Conductivity of JP-8
So why should I care about equations of state?
EOS Characteristics

<table>
<thead>
<tr>
<th>EOS Type</th>
<th>Vapor Phase</th>
<th>Liquid Phase</th>
<th>Critical region</th>
<th>Accuracy</th>
<th>Speed</th>
<th>Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal gas law</td>
<td>✓</td>
<td></td>
<td></td>
<td>Low</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>vdW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Low</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Cubics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Moderate</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Virials</td>
<td>✓</td>
<td></td>
<td></td>
<td>Moderate</td>
<td>Med</td>
<td>Yes</td>
</tr>
<tr>
<td>BWRs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>High</td>
<td>Med</td>
<td>Yes</td>
</tr>
<tr>
<td>Helmholtz</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Very High</td>
<td>Low</td>
<td>Yes</td>
</tr>
</tbody>
</table>

All calculate pressure as a function of density and temperature, except for the Helmholtz energy.
Types of fundamental equations

All thermodynamic properties can be calculated as derivatives from each of the four fundamental equations:

- Internal energy as a function of density and entropy
 - Entropy is not a measurable quantity.
- Enthalpy as a function of pressure and entropy
 - Cannot have a continuous equation across the phase boundary.
- Gibbs energy as a function of pressure and temperature
 - Cannot have a continuous equation across the phase boundary.
- Helmholtz energy as a function of temperature and density
 - Both temperature and density are measurable. Continuous across two-phase region.
Types of fundamental equations

All thermodynamic properties can be calculated as derivates from each of the four fundamental equations:

- Enthalpy as a function of pressure and entropy
 - Entropy is not a measurable quantity. Cannot have a continuous equation across the phase boundary.
- Gibbs energy as a function of pressure and temperature
- Helmholtz energy as a function of temperature and density
 - Both temperature and density are measurable. Continuous across two-phase region.
Types of fundamental equations

All thermodynamic properties can be calculated as derivates from each of the four fundamental equations:

- Gibbs energy as a function of pressure and temperature
 - Cannot have a continuous equation across the phase boundary.
- Helmholtz energy as a function of temperature and density
 - Both temperature and density are measurable. Continuous across two-phase region.
- Internal energy as a function of density and entropy
 - Entropy is not a measurable quantity.
- Enthalpy as a function of pressure and entropy
 - Entropy is not a measurable quantity. Cannot have a continuous equation across the phase boundary.
Types of fundamental equations

All thermodynamic properties can be calculated as derivates from each of the four fundamental equations:

- Helmholtz energy as a function of temperature and density
 - Both temperature and density are measurable. Continuous across two-phase region.

- Internal energy as a function of density and entropy
 - Entropy is not a measurable quantity.

- Enthalpy as a function of pressure and entropy
 - Entropy is not a measurable quantity. Cannot have a continuous equation across the phase boundary.

- Gibbs energy as a function of pressure and temperature
 - Cannot have a continuous equation across the phase boundary.
Given density and temperature, all other properties can be calculated.

Iterative solutions required given input conditions of pressure and temperature; pressure and enthalpy; pressure and entropy; saturation temperature; vapor pressure; etc.
Properties calculated from an EOS

- Temperature
- Pressure
- Density
- Heat capacity
- Speed of sound
- Energy
- Entropy
- Enthalpy
- Fugacity
- Second virial coefficient
- Joule-Thomson coefficient
- Volume expansivity
- Compressibility
- Vapor-liquid equilibrium

*** Cannot calculate viscosity and thermal conductivity ***
REFPROP program

- www.nist.gov/ srd/ nist23.htm
- 90 pure fluids
- Mixtures with up to 20 components
- All thermodynamic and transport properties
- Table and plot generation
- Fluid search menu
So, what if I ignore the volatility (i.e., the distillation curve)?

Volatility of S-8

- experimental data, Bruno 2006
- 7 component surrogate, Huber et al 2008
- 10 component surrogate, Bruno 2006
And predictively, for JP-900
In the remaining 4 months:

- The necessary equations of state for the surrogates will be completed.
- The surrogate model will be completed.
- The RefProp fluid files will be completed.
- Reports and papers will be completed.
Acknowledgements

• AFOSR
 – Julian Tishkoff and Ralph Anthenien

• Tim Edwards, AFRL