Intricacies of Counterflow Flames in Validating Chemical Kinetic Models

Harsha Chelliah
Mechanical and Aerospace Engineering
University of Virginia

Acknowledgements:
Gaetano Esposito, Brendyn Sarnacki, Vish Katta

Funding:
AFOSR/NASA National Center for Hypersonic Combined-Cycle Propulsion
NASA Hypersonics NRA Program
OSD TE & ST Program
Motivation

- Experimental data presented at the last MACCCR Meeting by Jackie Sung

![Graph showing n-Dodecane/Air, φ=1.4, $T_u \sim 400$ K]
Motivation

- Experimental data presented at the last MACCCR Meeting by Jackie Sung

![Graph showing reference flame speed versus stretch rate for S-8/Air Mixtures, $T_u=400$ K.](image-url)
Motivation

- Experimental data presented at the last MACCCR Meeting by Jackie Sung
Questions?

- How accurate is the local strain rate, reference velocity, ...?
- Can we use an alternate counterflow flame property for optimization and validation of chemical kinetic models?
Questions?

- How accurate is the local strain rate, reference velocity, ...?
- Can we use an alternate counterflow flame property for optimization and validation of chemical kinetic models?

Extinction Strain Rate of Nonpremixed Flames
Outline

- A brief review

- Uncertainties of experimental data:
 - premixed flames (last MACCCR Fuels Meeting at NIST)
 - non-premixed flames (eg. ethylene-air data of USC, NASA Langley, and UVa)

- Two-dimensional effects?
 - LDV and PIV data
 - UNICORN simulations by Katta

- Mechanism reduction based on principal component/QSSA analyses

- Concluding remarks
Review - Free-floating Limit

- Ideal, free-floating counterflow field for $L/D > 2$

![Diagram of free-floating flow field]

Ideal case

Potter, Heimel, and Buttler
Eighth Combustion Symposium, 1960

$a_{global} \sim 1900 s^{-1}$ at $L/D \sim 1$
Review - Free-floating Limit

- Non-ideal counterflow field for $L/D < 1$

Non-ideal case

Potter, Heimel, and Buttler
Eighth Combustion Symposium, 1960

$$a_{global} \sim 1900\, s^{-1} \text{ at } L/D \sim 1$$
Review - Influence of Nozzle Exit Profile

- Non-ideal separation distance effect on nozzle exit velocity profile
- First demonstrated by Rolon et al. in early 1990’s.
Review - Influence of Nozzle Exit Profile

- Non-ideal separation distance effect on nozzle exit velocity profile
- First demonstrated by Rolon et al. in early 1990’s.
Review - Influence of Radial Boundary Condition

- Finite $\frac{\partial v_r}{\partial r} (\equiv U)$ (Chelliah et al., 23rd Symp., 1990, Smooke et al. 1990)
- Axial velocity of methane-air non-premixed flames near extinction
Outline

- A brief review

- Uncertainties of experimental data:
 - premixed flames (last MACCCR Fuels Meeting at NIST)
 - non-premixed flames (eg. ethylene-air data of USC, NASA Langley, and UVa)

- Two-dimensional effects?
 - LDV and PIV data
 - UNICORN simulations by Katta

- Mechanism reduction based on principal component/QSSA analyses

- Concluding remarks
Uncertainties – Burning Velocity of Premixed Flames

- Three key uncertainties
 - (i) local strain rate,
 - (ii) reference velocity
 - (ii) linear vs. non-linear extrapolation (Stahl, Warnatz, and Rogg, 1988).

![Graph of n-Dodecane/Air, φ=1.4, $T_u \sim 400$ K](image)

- USC
- CWRU
Some Definitions of Nonpremixed Flame Characteristics

- Global Strain Rate $a_{global} = 4 \frac{v_{air}}{L}$ (Seshadri and Williams, 1978)

where v_{air} from (i) Volume/Area, (ii) LDV/PIV, and (iii) computations.
Extinction limit of ethylene-air Nonpremixed Flames

- ONE key uncertainty ⇒ measurement of strain rate!

- Experiments from USC, NASA Langley, and UVa.

- Chemical kinetic models of Wang and co-workers.

- Full Stefan-Maxwell Eq. to reduce uncertainty of diffusion
Influence of $U = 0$ vs. $U = \text{Finite}$ on Local Strain Rate

- $\frac{dv_z}{dz} + 2\rho U(z) = 0$ (Kee et al. 1988, Smooke et al., 1990)
Summary of Experimental Data and Uncertainties

- Particle seeding in LDV/PIV \Rightarrow lower local strain rate?

![Graph showing strain rate vs. separation distance with data points for different conditions.]
Outline

- A brief review

- Uncertainties of experimental data:
 - premixed flames (last MACCCR Fuels Meeting at NIST)
 - non-premixed flames (eg. ethylene-air data of USC, NASA Langley, and UVa)

- Two-dimensional effects?
 - LDV and PIV data
 - UNICORN simulations by Katta

- Mechanism reduction based on principal component/QSSA analyses

- Concluding remarks
2D Axisymmetric Computations

- Amantini et al. (2007) considered a methane-air case
- Vish Katta’s UNICORN code with USC Mech II Optimized for ethylene-air
2D Axisymmetric Computations

- Amantini et al. (2007) considered a methane-air case
- Vish Katta’s UNICORN code with USC Mech II Optimized for ethylene-air
Outline

- A brief review

- Uncertainties of experimental data:
 - premixed flames (last MACCCR Fuels Meeting at NIST)
 - non-premixed flames (eg. ethylene-air data of USC, NASA Langley, and UVa)

- Two-dimensional effects?
 - LDV and PIV data
 - UNICORN simulations by Katta

- Mechanism reduction based on principal component/QSSA analyses

- Concluding remarks
Principal Component Analysis with Sensitivity (PCAS)

• Starting point of PCAS is the construction of response function (Vajda, Valko, and Turanyi (1985)):

\[
Q(P) = \sum_{j=1}^{q} \sum_{i=1}^{m} \left[\frac{f_i(x_j, P) - f_i(x_j, P^0)}{f_i(x_j, P^0)} \right]^2
\]

where \(P, P^0 \) are unperturbed and perturbed parameters \((k = 1, ..., p) \); \(f_i \) a set of target functions \((i = 1, ..., m) \); \(x_j \) collection of analysis points \((j = 1, ..., q) \).

• Around \(P^0 \), the response function can be approximated as:

\[
Q(P) \approx q(P) = (\Delta P)^T S^T S(\Delta P) = (\Delta P)^T U^T \Lambda U(\Delta P) = \sum_{k=1}^{p} \lambda_k (\Delta \Psi_k)^2
\]

where \(\Delta P = P - P^0 \); \(S \) collection of sensitivity matrices; \(\lambda_k \) eigenvalues; \(U \) normalized eigenvectors; \(\Delta \Psi = U^T P \) principal components.
Application of PCAS to Ignition Delay

- Several key issues!!!
- Ethylene-air, $p=1.0\text{atm}$, $\phi=1.0$ with Wang 2003 detailed model (71 species in 467 reactions)
Application of PCAS to Ignition Delay

- Several key issues!!!
- Ethylene-air, $p=1.0\text{atm}$, $\phi=1.0$ with Wang 2003 detailed model (71 species in 467 reactions)
Application of PCAS to Flame Propagation

- Ethylene-air, $p=1.0\,\text{atm}$, $T_0=300\,\text{K}$ with Wang 2003 detailed model (71 species in 467 reactions)
Application of PCAS to Flame Extinction

- Ethylene-air, $p=1.0$ atm, $T_0=300$ K
QSSA Reduction Approach

• In the process of updating based on USC Mech II Optimized.
NIST Chemical Kinetics Database Program

- Extremely useful tool to analyze differences between chemical kinetic models (Don Burgess)

<table>
<thead>
<tr>
<th>View</th>
<th>Reaction</th>
<th>Class [Sites]</th>
<th>log(Ratio)</th>
<th>A</th>
<th>b</th>
<th>E</th>
<th>Datatype</th>
<th>Reference</th>
<th>Model</th>
<th>Kinetics DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O_3H + m + H = H_2O + m</td>
<td>O_3H [O_3H] (-)</td>
<td>-0.6</td>
<td>1.10E+22</td>
<td>-2.00</td>
<td>0</td>
<td></td>
<td>2009-Ethylene-Wang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CH_3 + H + H = CH_4 + H</td>
<td>CH_3 [CH_3] (-)</td>
<td>-0.6</td>
<td>3.10E+15</td>
<td>-0.63</td>
<td>383</td>
<td></td>
<td>2009-Ethylene-Wang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CH_3 + CH_4 = C_2H_4 + H_2O</td>
<td>CH_3 [CH_3]</td>
<td>-0.7</td>
<td>1.25E+14</td>
<td>0.00</td>
<td>0</td>
<td></td>
<td>2009-Ethylene-Wang</td>
<td>Etwd Rev</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CH_4 + C_2H_5 + H</td>
<td>C_2H_5 [C_2H_5]</td>
<td>-0.4</td>
<td>1.41E+13</td>
<td>0.10</td>
<td>10600</td>
<td></td>
<td>2009-Ethylene-Wang</td>
<td>Etwd Rev</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C_2H_4 + OH = C_2H_5 + H_2O</td>
<td>C_2H_4 [C_2H_4]</td>
<td>-0.6</td>
<td>1.34E+07</td>
<td>2.00</td>
<td>2500</td>
<td></td>
<td>2009-Ethylene-Wang</td>
<td>Etwd Rev</td>
<td></td>
</tr>
</tbody>
</table>
Concluding Remarks

- In quasi 1D extinction limit computations, $U = 0$ and $U = \text{finite}$ (from actual experiments) differ by nearly 10%!!!
- In extinction experiments with convergent nozzles, $L/D = 1$ case shows a non top-hat velocity profile \Rightarrow main contributor to the differences between the measured local strain rate and the global strain rate
- Random errors (1160 ± 20) are too large to extract any systematic uncertainty associated with L/D variation
- Detailed reaction models continue to evolve and may converge through collaborative based efforts like PrIME, this Fuels Group, ...

\Rightarrow need to create accurate and independent experimental data with well-defined uncertainties

- Automated reduction procedures are needed to take advantage of the evolving detailed reaction models (PCAS/QSSA, ...)
Acknowledgements

- Hai Wang for sharing kinetic models
- Wing Tsang, Jeff Manion, and Don Burgess at NIST
- OSD T&E and S&T, NASA Hypersonics NRA Program, and AFOSR/NASA National Center for Hypersonic Combined-Cycle Propulsion