Supercritical Fuel Pyrolysis

Judy Wornat

Louisiana State University
Department of Chemical Engineering
Baton Rouge, Louisiana
U. S. A.
SUPERCritical CONDITIONS FOR FUEls IN THE NEXT GENERATION OF HIGH-SPEED AIRCRAFT

Fuel is used as a cooling agent in high-speed aircraft.

High pressures and high temperatures are sustained in the fuel lines.

Pyrolytic reactions produce poly-cyclic aromatic hydrocarbons (PAH), precursors to carbonaceous fuel-line deposits.

To understand the reaction chemistry, supercritical pyrolysis experiments are performed with model fuels.
1-methylnaphthalene

$T_c = 499^\circ C$
$P_c = 36$ atm

n-decane

$T_c = 345^\circ C$
$P_c = 21$ atm
Supercritical Fuel Pyrolysis Reactor System
Summary and Conclusions

Supercritical 1-methylnaphthalene pyrolysis
- quantified fuel conversion and product yields, as functions of temperature, from 550 to 600 °C, at 80 atm and 140 s;
- PAH yields increase dramatically with temperature at the highest temperatures, especially for the largest PAH;
- differences in product yields related to mechanisms of formation.

Supercritical \(n \)-decane pyrolysis
- applied normal-phase HPLC fractionation / reversed-phase HPLC analysis;
 - demonstrates a 6- to 7-fold increase in the number of identifiable products;
 - greatly improves component resolution and quantifiability;
 - permits the identification of large PAH structures that may be key precursors to carbonaceous solids;
- identified 276 product PAH ranging in size up to 9 fused aromatic rings;
- quantified PAH product yields, as functions of temperature, from 530 to 570 °C, at 100 atm and 140 s;
- at 100 atm, PAH yields increase dramatically with temperature, especially as temperatures approach the onset of carbonaceous solids formation.
Acknowledgement

Air Force Office of Scientific Research.
Anyone interested in finding out more about this work can contact the principal investigator:

Professor Mary Julia (Judy) Wornat
Louisiana State University
Department of Chemical Engineering
South Stadium Drive
Baton Rouge, Louisiana 70803

(225) 578-7509
mjwornat@lsu.edu