Oxidation of Potential Surrogate Fuel Components of JP-8

Kenneth Brezinsky
Mechanical Engineering
University of Illinois, Chicago

2007 MURI
Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels

September 17, 2009
Technical Approach

- Oxidation experiments of individual surrogate fuel components, m-xylene and n-propylbenzene in the High Pressure Single Pulse Shock Tube (HPST).
- Experimental regime:
 - Temperature: 900-1500K, pressure: 6-43 atm, equivalence ratios: 0.5-0.8.
- Validate currently available literature models against the experimental data.
- Develop chemical kinetic models for our experimental conditions.
Shock Tube Facility

HPST Facility

Sampling

Analytical: GC/MS, GC/FID-TCD

HPST Operating Conditions
Temperatures: 600-2500 K
Pressures: 5-1000 atm
Reaction Times: 0.5-3.0 ms
Experimental Conditions

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Avg. Shock Pressure /atm</th>
<th>Fuel /ppm</th>
<th>O₂/ppm</th>
<th>Temperature Range /K</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Propylbenzene</td>
<td>19</td>
<td>63</td>
<td>1390</td>
<td>924-1587</td>
<td>0.55</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>43</td>
<td>137</td>
<td>1885</td>
<td>1100-1350</td>
<td>0.75</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>27</td>
<td>148</td>
<td>2996</td>
<td>1133-1500</td>
<td>0.52</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>6</td>
<td>115</td>
<td>2162</td>
<td>1200-1318</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Analysis: GC-TCD, FID, MS
Major Species: CO, CO₂, C₂H₄, C₂H₂, C₆H₆, C₆H₅CH₃, C₂H₆
Trace Species: 1,2-C₃H₄, C₃H₄, 1,3-C₄H₆, C₆H₅C₂H₃, C₇H₆O, C₆H₅C₂H₅
n-Propylbenzene Oxidation Modeling
P=19 atm, Φ=0.55

- Program: CHEMKIN version 3.6.2
- Subroutine: SENKIN
- Chemical kinetics model:
 - Dagaut model²
 - Validated for jet-stirred reactor data at P = 1atm, Φ = 0.5-1.5, 900-1250K

$P = 19 \text{ atm, } \Phi = 0.55$

Graph:

- **Experiments**
- **Dagaut Model**

Axes:
- **Temperature/K**
- **Mole fraction/ppm**

Species:
- C_9H_{12}
- O_2
- CO
- CO_2
- C_2H_4
- C_6H_6
- $\text{C}_6\text{H}_5\text{CH}_3$
- C_2H_2
- $\text{C}_6\text{H}_5\text{C}_2\text{H}_3$
- C_2H_6
- $\text{C}_6\text{H}_5\text{C}_2\text{H}_5$

Note: Copyrighted Data, Please Contact Authors for Permission to Utilize.
UIC n-Propylbenzene Oxidation Model

- Model submechanisms
 - High pressure CO/H₂ mechanism³
 - C1-C4 mechanism⁴
 - C5-C8 chemistry-UIC m-Xylene model
 - Dagaut et al. n-propylbenzene oxidation mechanism.

P = 19 atm, Φ = 0.55
Analysis of the Simulation

- Good agreement with the experimental data
 - $\text{C}_6\text{H}_5\text{C}_3\text{H}_7$, $\text{C}_6\text{H}_5\text{C}_2\text{H}_5$

- Species with very high concentration
 - O_2
 - C_2H_2, C_2H_6
 - $\text{C}_6\text{H}_5\text{C}_2\text{H}_3$

- Species with very low concentration
 - CO, CO_2
 - C_2H_4
 - C_6H_6, $\text{C}_6\text{H}_5\text{CH}_3$
$P = 19$ atm, $\Phi = 0.55$

![Graphs showing mole fraction vs. temperature for different compounds at 19 atm and $\Phi = 0.55$.](Image)

Copyrighted Data, Please Contact Authors for Permission to Utilize.
Analysis of the Simulation Revised Model

- Good agreement with the experimental data
 - $\text{C}_6\text{H}_5\text{C}_3\text{H}_7$
 - C_2H_4
 - $\text{C}_6\text{H}_5\text{CH}_3$, $\text{C}_6\text{H}_5\text{C}_2\text{H}_3$, $\text{C}_6\text{H}_5\text{C}_2\text{H}_5$
- Species with very high concentration
 - O_2
 - C_2H_2
- Species with very low concentration
 - CO, CO_2
 - C_6H_6
- Trends very good
m-Xylene Oxidation Modeling

- Program: CHEMKIN version 3.6.2
- Subroutine: SENKIN

Models

- **Battin-Leclerc Model**
 - Modeling of ortho-, meta- and para-xylenes.
 - Validated for ignition delay times in shock tube, $P = 6.7$ to 9 bar, $\Phi = 0.5-2$, 1330-$1800K$.

- **Dagaut Model**
 - Validated for jet-stirred reactor data at $P = 1$ atm, $\Phi = 0.5-1.5$, 900-$1400K$.

m-Xylene Oxidation Modeling

m-Xylene

P = 43 atm, \(\Phi = 0.75 \)

Normalized Molefraction vs. Temperature/K

P = 27 atm, \(\Phi = 0.52 \)

P = 6 atm, \(\Phi = 0.65 \)

O_2

P = 43 atm, \(\Phi = 0.75 \)

P = 27 atm, \(\Phi = 0.52 \)

P = 6 atm, \(\Phi = 0.65 \)

Normalized Molefraction vs. Temperature/K

Experiment ▢ Battin-Leclerc Model ▲ Dagaut Model

Copyrighted Data, Please Contact Authors for Permission to Utilize.
UIC m-Xylene Model

- Analogous reactions of m-xylene based on High Pressure Toluene Oxidation Model.

- Model -submechanisms
 - High pressure toluene oxidation model
 - High pressure CO/H\(_2\) mechanism
 - High pressure toluene pyrolysis model
 - High pressure ethane oxidation model\(^{10}\)

- Thermochemistry taken from Dagaut and Battin-Leclerc m-xylene mechanisms.

- Added reactions
 - \(\text{OC}_6\text{H}_3(\text{CH}_3)_2=\text{CO}+\text{C}_5\text{H}_3(\text{CH}_3)_2\)
 - \(\text{OC}_6\text{H}_4\text{CH}_3=\text{CO}+\text{C}_5\text{H}_4-1\text{CH}_3\)
 - Reactions of methylcylopentadiene\(^{11}\) and dimethyl cyclopentadiene decay.

$P = 27 \text{ atm}, \Phi = 0.52$

Copyrighted Data, Please Contact Authors for Permission to Utilize.
Carbon Balance, $P = 27$ atm, $\Phi = 0.52$
Analysis of the Simulation UIC Model

- Good agreement with the experimental data
 - m-Xylene
 - CO, CH₄
 - C₂H₂
- Correct trends and lower quantification
 - CO₂, O₂
 - C₂H₄
 - C₆H₆, C₆H₅CH₃
- No displaced trends
Summary

- **HPST:**
 - Oxidation experiments of m-xylene and n-propylbenzene.
 - Experimental conditions:
 - Temperature: 900-1500K, pressure: 6-43 atm, equivalence ratios: 0.5-0.8.
- **Modeling:**
 - Oxidation model of m-xylene shows good agreement with the experimental data.
 - Preliminary oxidation model developed for n-propylbenzene based on m-xylene model.
Future Work

Experiments

- Oxidation experiments of n-propylbenzene and m-xylene at fuel rich conditions.
- Oxidation and pyrolysis experiments on 1,3,5- and 1,2,4-trimethylbenzene.
- Improve carbon balance

Modeling

- Refinement of n-propylbenzene oxidation model.
- Validate the dominant pathways of m-xylene decay by theoretical methods.
Acknowledgements

1) AFOSR MURI FA9550-07-1-0515, PI: Professor F.L. Dryer
2) HPST Laboratory Students-Soumya Gudiyella, Tom Malewicki, Andrea Comandini, Stephen W. Garner.