High-Temperature Oxidation of \(n \)-Butanol, \(iso \)-Butane, and \(iso \)-Butene in Low-Pressure Premixed Flames

N. Hansen\(^1\), M. R. Harper\(^2\), W. H. Green\(^2\), B. Yang\(^1,3\), H. Wang\(^3\)

\(^1\)Combustion Research Facility, Sandia National Laboratories
\(^2\)Department of Chemical Engineering, Massachusetts Institute of Technology
\(^3\)Department of Aerospace and Mechanical Engineering, University of Southern California

1\(^{st}\) Annual Conference of the Combustion EFRC
Sept. 23\(^{rd}\) – Sept. 24\(^{th}\) 2010
✓ **Experimental Details**
 - Photoionization Mass Spectrometer
 - Flame Conditions

✓ **Flame Chemistry Insights (n-butanol flame)**
 - Experiment vs. Model
 - Fuel-Consumption Pathways
 - Enols and Aldehydes: Reaction Path Analysis

✓ **Summary and Outlook**
Experimental Details: Synchrotron Photoionization Molecular-Beam Mass Spectrometry

- Premixed laminar low-pressure flames
- Molecular beam sampling "freezes" chemistry
- Time-of-flight mass spectrometry offers the appeal of universal and relatively rapid data collection
- Photoionization mass spectrometry allows identification of species
 - by mass
 - by ionization energy
- Energy Scan:
 - to identify species by photoionization efficiency curves
- Burner Scan:
 - to get spatial profiles the burner is moved relative to the quartz cone and photon energy is fixed
Experimental Details: Synchrotron Photoionization Molecular Beam Mass Spectrometry

- **Burner Scan**
 to get spatial profiles the burner is moved relative to the quartz cone and photon energy is fixed

- **Energy Scan**
 to identify species by photoionization efficiency curves the photon energy is scanned and the burner position is fixed

![Graphs and images showing experimental results for Ethene flame $\Phi = 1.9$ and other measurements.](image-url)
about 30 to 40 species were quantified for each flame

- temperature profiles were measured using OH LIF
- resulting mole fraction data are compared with combustion chemistry model predictions

Experimental Details: Flame Conditions and Combustion Chemistry Models

<table>
<thead>
<tr>
<th></th>
<th>n-butanol</th>
<th>n-butanol</th>
<th>i-butanol</th>
<th>i-butane</th>
<th>i-butene</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel</td>
<td>3.32</td>
<td>3.52</td>
<td>3.52</td>
<td>9.87</td>
<td>10.53</td>
</tr>
<tr>
<td>H$_2$</td>
<td>24.12</td>
<td>24.12</td>
<td>24.12</td>
<td>40.13</td>
<td>39.47</td>
</tr>
<tr>
<td>O$_2$</td>
<td>16.68</td>
<td>24.12</td>
<td>24.12</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Ar</td>
<td>80</td>
<td>48.24</td>
<td>48.24</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>pressure</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Stoichiometry</td>
<td>1.2</td>
<td>1.38</td>
<td>1.38</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fuel</th>
<th>3.32</th>
<th>3.52</th>
<th>3.52</th>
<th>9.87</th>
<th>10.53</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td>24.12</td>
<td>24.12</td>
<td>24.12</td>
<td>40.13</td>
<td>39.47</td>
</tr>
<tr>
<td>O$_2$</td>
<td>16.68</td>
<td>24.12</td>
<td>24.12</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Ar</td>
<td>80</td>
<td>48.24</td>
<td>48.24</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>pressure</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Stoichiometry</td>
<td>1.2</td>
<td>1.38</td>
<td>1.38</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>
n-butanol: Experiment vs. Modeling (Harper et al.)

- The updated model includes additional pressure-dependent rate coefficients
 - *the model was insensitive to these kinetic parameters for the previous validation targets*
- experimentally determined major species profiles agree satisfactorily with modeled results
- larger discrepancies for some minor species, including C₃’s and C₄’s
n-butanol: Fuel-Consumption by H-Abstraction Reactions

First Steps in Fuel-Consumption:
- Fuel-consumption is initiated by H-abstraction reaction with H, O, and OH and formation of the isomeric C_4H_9O radicals
- C_4H_9O radicals dissociate and form butenols/butanal, or smaller fragments including CH_3, C_2H_4, C_2H_5, C_3H_6, and enols (ethenol + propenol)
- C_4H_9O radicals also react with other radical species, mainly H and O

Relative Rate of Consumption:

![Graph showing relative rate of consumption with various reactions labeled.]
n-butanol:

Reaction Path Analysis – Enols and Aldehydes

- **Mole Fraction Profiles:**
 - the model over-estimates the importance of enols (ethenol, propenol, and butenol)
 - with the exception of butanal, the importance of aldehydes is under-estimated

- **Relative Rates of Formation:**
 - butenol (CH₃CH₂CHCHOH) and butanal (CH₃CH₂CH₂CHO) are formed via H-abstraction reactions of the C₄H₉O radicals
Summary and Outlook

✓ Summary:
 - PI-MBMS is employed to study the isomeric composition of low-pressure flat flames fueled by
 \[n\text{-butanol} \quad \text{iso-butanol} \quad \text{iso-butane} \quad \text{iso-butene} \]
 - mole fraction profiles are used to improve detailed chemical models
 - only \(n\)-butanol combustion chemistry discussed here in detail
 ✓ reaction path analysis reveals important fuel-consumption pathways and uncovers uncertainties for \(\text{C}_4\text{H}_9\text{O} \) radical reactions
 - for iso-butane and iso-butene combustion chemistry insights see Bin’s poster

✓ Outlook:
 - provide more experimental data for further model refinements
 - consolidate the different mechanisms under development
 - low-temperature oxidation chemistry in a jet-stirred reactor (with Y. Ju)