Impact of Alternative Fuels on Gas Turbine and Diesel Engine Combustion

Mani Sarathy, William J. Pitz (PI), Charles K. Westbrook, Marco Mehl, LLNL
Hans-Heinrich Carstensen, Lam K. Huynh, Stephanie M. Villano, Anthony M. Dean (PI), Colorado School of Mines

Fuel Summit, 20-23 September 2010, Princeton, NJ

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Acknowledgment: Sponsor

Office of Naval Research
Dr. Dave Shifler, Program Manager
Assess fuel impact on gas turbine engine performance

- Alternate Fuel: Phys & Chem Prop
- Surrogate for alternate fuel

Detailed Kinetics for Surrogate

Selection of physics-based tools sets

Simulations

Probable impact on combustor

Interpretations and Engine Impact

From Med Colket, UTRC
Examine effects of alternative fuel (F-T and biofuels) on diesel engine combustion

- Navy has many diesel engines
- With Jim Cowart and Patrick Caton, U.S. Naval Academy

Naval Academy Cooperative Fuels Research (CFR) diesel test engine
Navy is interested in Fischer-Tropsch (FT) fuels: They can contain large amounts of singly-methylated iso-alkanes.

FT analysis (NIST*)
- 57% single methyl branch alkanes
- 25% n-alkanes
- 16% multiple branched alkanes
- 2% cycloalkanes

Smith et al. Int. J. Propulsion (2008)
We are first focusing on 2-methyl alkanes have a single methyl branch and interesting ignition behavior.

<table>
<thead>
<tr>
<th>Species</th>
<th>Cetane No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nC₇H₁₆</td>
<td>54</td>
</tr>
<tr>
<td>C₇H₁₆₋₂</td>
<td>42</td>
</tr>
<tr>
<td>nC₈H₁₈</td>
<td>65</td>
</tr>
<tr>
<td>C₈H₁₈₋₂</td>
<td>49</td>
</tr>
<tr>
<td>nC₉H₂₀</td>
<td>75</td>
</tr>
<tr>
<td>C₉H₂₀₋₂</td>
<td>54</td>
</tr>
</tbody>
</table>
Chemical Kinetic Mechanism for 2-methyl alkanes

Includes all 2-methyl alkanes up to C20 which covers the entire distillation range for gasoline, jet and diesel fuels.

Built with the same reaction rate rules as our successful iso-octane and iso-cetane mechanisms.

7,900 species
27,000 reactions
Why do we need to get the distillation curve right for diesel combustion?

6-component diesel surrogate

diesel spray calculation

Light components come off first near the upstream portion of the diesel jet

Experimental Validation

- Idealized chemically reacting flow systems with/without simplified transport phenomenon

Jet Stirred Reactors

Premixed Laminar Flames

Shock tube

Non Premixed Flames

Combustion Parameters
- Temperature
- Pressure
- Mixture fraction (air-fuel ratio)

Mixing of fuel and air

Engine Combustion

High pressure flow reactors

Lawrence Livermore National Laboratory
2-methylhexane comparison in the RCM

Experimental data:

Stoichiometric/’air’ mixtures 15 atm

Entire compression stroke simulated and heat loss simulated after end of compression

Ignition Delay Time (ms)

Temperature at End of Compression (K)

Lawrence Livermore National Laboratory
2-methyl heptane model behaves well under high temperature shock tube conditions

\[\phi = 3, \ P = 21 \ atm, \ 1.355\% \ fuel, \ O_2/Ar \]

Experiments: Dayton high pressure shock tube
Previously shown that simulated ignition behavior of n-alkanes showed little dependence with carbon length.

Westbrook et al. Comb. Flame 2009

Lawrence Livermore National Laboratory
2-methyl alkanes show effect of chain length at higher equivalence ratio and pressure (Dayton conditions):

\[\phi = 3, P = 21 \text{ atm}, 1.355\% \text{ fuel, } O_2/Ar \]

Reactivity increases with chain length:

- Biggest fuel effect of chain length found in NTC region.
2-methylalkanes show less NTC than n-alkanes

\(\phi = 3, \ P = 21 \ \text{atm}, \ 1.355\% \ \text{fuel}, \ \text{O}_2/\text{Ar} \)

Less NTC behavior in 2-methylalkane

- 2-methylalkane less reactive than n-alkane

Lawrence Livermore National Laboratory
Comparison of reactivity for all the n-alkanes and 2-methyl alkanes

(\(\phi = 3\), \(P = 21\) atm, 1.355% fuel, \(O_2/Ar\))

Reactivity increases with chain length

Effect of chain length for n-alkanes now observed
Opposed-flow Diffusion Flame (OPPDIF) comparisons for a 2-methyl heptane

- The one dimensional flame structure is ideal for modeling.
- The emissions and temperature profiles are dependent on chemical kinetics due to the non-turbulent flame.

Port diameter = 25.4 mm
Port Gap = 20 mm
Overall good prediction of major and minor species of 2-methylheptane

Good prediction of major species profiles

Important minor species are well predicted
Further experimental validations planned, 2-methylheptane

- Counterflow Flame Ignition/Extinction
 UC San Diego
- Jet Stirred Reactor
 CNRS Orleans, France
- Shock Tube
 Rensselaer Polytechnic Institute, New York
- Ignition Quality Tester (IQT)
 NREL, Colorado
- Flow Reactor
 Princeton University, New Jersey
Collaborating with the Naval Academy on fuel effects in diesel engine

Mixtures of n-hexadecane and toluene (mixtures are by liquid volume) (Midshipman Aaron Carr)

Experiments on n-hexadecane/toluene mixtures in a Diesel CRF engine (SAE 2010-01-2188: Mathes, Ries, Caton, Cowart, Prak, Hamilton, US Naval Academy)

Ignition delay is defined from start of injection to 10% mass burned

Lawrence Livermore National Laboratory
Summary for LLNL work

A new chemical kinetic mechanism for 2-methyl alkanes has been developed:

• The mechanism covers the entire distillation curve of practical gasoline, jet and diesel fuels (C₇-C₂₀).
• The model successfully reproduces the experimental data currently available for this class of fuels.
• Further validations planned.
• Key differences between 2-methylalkanes and \textit{n}-alkanes are reproduced by the model.
Detailed Modeling of Low-Temperature Alkane Oxidation:
High-Pressure Rate Rules for Alkyl+O₂ Reactions

Hans-Heinrich Carstensen, Lam K. Huynh, Stephanie M. Villano, and Anthony M. Dean

Chemical Engineering Dept.
Colorado School of Mines

Third Fuels Summit
September 20-23, 2010
Development of large detailed chemical models facilitated by the use of rate estimation techniques

- Typical hydrocarbon gas phase reaction mechanisms contain
 - Hundreds of species
 - Thousands of reactions, many pressure-dependent

- Problem: How to assure consistency in rate constant assignments?
 - Experimental info only available for small fraction of reactions
 - Often literature data over limited range of conditions
 - High level calculations restricted to small molecules

- Solution: Develop accurate rate constant estimation method
 - Use high-level theory to calculate rate constants for smaller species
 - Generalize results on a per-site basis and use these for larger species
 - Use rate rule based rate constants as input for pressure-dependence analysis
Model development: from electronic structure calculations to pressure-dependent rate constants

- Gaussian Software®
- Geometry, Frequencies, Electronic Energy, Dipole Moment, Polarizability, …
- FANCY
- Heat of Formation, Entropy, Heat Capacity
- TSTdG
- 3-Freq Representation, NASA Polynomials
- CHEMDIS
- High-pressure Rate Constants $k_\infty(T)$ for Elementary Reactions
- Pressure-dependent Rate Constants $k(T,P)$ for Apparent Reactions

Lawrence Livermore National Laboratory
Reaction classes analyzed

- H and CH$_3$ Abstraction from Alkanes, Cycloalkanes, Alkenes

- Intramolecular H-Abstraction
 The Kinetics of Pressure-Dependent Reactions, in Comprehensive Chemical Kinetics (Elsevier), 2007, 42 105-187

- H and CH$_3$ Abstraction from Alcohols, Elimination of Water from Alcohols

- RO$_2$ Isomerizations
- RO$_2$ Concerted Elimination of HO$_2$
- QOOH = Cyclic Ether + OH
- O$_2$QOOH Isomerization
- O$_2$QOOH Concerted Elimination of HO$_2$
Alkyl isomerizations consistent with expectations

Primary to secondary H- atom shift reactions:

- Lower activation energy for 5 and 6-member ring TSs with less ring strain
- Lower A-factor as more CH2 rotors tied up in TS
- Additional calculations ongoing to confirm consistent behavior
 - Results used as basis for rate rules
N-propyl + O2 chemistry: Fast isomerization of CCCOO• adduct leads to chain branching

- Only important pathways for n-propyl + O2 are isomerization, concerted elimination and redissociation
i-propyl+O2: Slower isomerization of CC(OO•)C adduct leads to chain inhibition

- Concerted elimination dominant for isopropyl + O₂
 - branching pathway inhibited
- Detailed calculations show other pathways can be neglected
RO$_2$ isomerizations show same qualitative behavior as alkyl radicals

- Activation energy depends on ring size and overall thermochemistry
- Again amenable to rule generation
Comparison of model predictions to propane ignition over the NTC region in a RCM

- Expect all predictions to be faster than data
 - Predictions adiabatic
 - Expect heat loss at longer times in data
- All models capture NTC behavior
 - NTC region at higher T with CSM model
 - Reduced CSM model, with much smaller reaction subsets for both RO2 and O2QOOH, very similar to full model
- Analysis suggests substantial differences in Galway and CSM models
 - Galway model* uses LLNL rate rules

Experimental data from Galway RCM:
Significant differences in CSM vs. LLNL rate constants (e.g. RO2 isomerization)

- CBS-QB3 results generally lower than LLNL values for 5-member TS
- CBS-QB3 results much higher than LLNL values for 6-member TS
 - Mainly due to higher A-factors (much higher than alkyl isomerizations)
- Differences lead to significantly different reaction pathways
Summary/Next Steps

- Mechanism constructed with rate constants based on unadjusted CBS-QB3 potential energy surfaces captures NTC behavior in propane oxidation
 - Need to extend mechanism to larger systems where more data available to reach firm conclusions on its success
- Relatively few reactions of RO₂ found to be important for ignition calculations
 - Significantly simplifies accounting for effects of pressure on reaction rates and branching ratios
- Extension to larger systems facilitated by ability to generalize results into reaction rate rules
- Extend approach to consider second addition of O₂ (to QOOH) that leads to low temperature chain branching