Reaction Models of Fundamental Combustion Properties

Hai Wang

Enoch Dames, David Sheen & Rei Tangko

University of Southern California
JetSurF – A Jet Surrogate Fuel Model

JetSurF is a detailed chemical reaction model for the combustion of jet-fuel surrogate. The model is being developed through a multi-university research collaboration and is funded by the Air Force Office of Scientific Research. Project participants include

F. N. Egolfopoulos, Hai Wang University of Southern California
R. K. Hanson, D. F. Davidson, C. T. Bowman, H. Pitsch Stanford University
C. K. Law Princeton University
N. P. Cernansky, D. L. Miller Drexel University
W. Tsang National Institute of Standards and Technology
R. D. Hardtke Imperial College London

New Release:
JetSurF Version 2.0 – A working model for the combustion of n-alkane up to n-dodecane, cyclohexane, and mono-alkylated cyclohexane up to n-butyl-cyclohexane
(Release Date: September 19, 2010)

Old Releases:
JetSurF Version 1.1 – A interim model for the combustion of
JetSurF Version 1.0 – A working model for n-alkane combustion
(Release Date: September 15, 2009)
JetSurF Version 0.2 (Release Date: September 8, 2009)
JetSurF Status

• Version 1.0+1.1 → **JetSurF 2.0**

 n-butyl-, *n*-propyl-, ethyl- and methyl- cyclohexanes* and cyclohexane.

 n-pentane to *n*-dodecane

 Some branched chain HCs + aromatics

• **Key Revisions from version 1.0+1.1**

 • Low temperature chemistry of cyclohexane and methylcyclohexane added

 • H-abstraction rates from Violi

 •

• **Validation test sets > 200** (documented online)

 http://melchior.use.edu/JetSurF
Multispecies Time-History Data

Davidson, Hong, Pilla, Farooq, Cook & Hanson, *Combustion and Flame* (2010)

[Diagram showing mole fraction of various species over time with labels for C2H4, CO2, H2O, OH.]

Solid lines: experiments; dashed lines: JetSurF 1.0
Multispecies Time Histories

300 ppm n-C_7H_{16} - 3300 ppm O$_2$ in Ar, $T_5 = 1365$ K, $p_5 = 2.35$ atm

Solid lines: experiments; dashed lines: JetSurF 1.0
Multispecies Time Histories

What can we learn from the multispecies time-histories?

• The model is accurate, but is it precise?

• Given the ~±5% experimental accuracy, can the data be utilized to improve model precision?

• To what extent the data improve model precision?
Propagation of Uncertainty

\[x_i = x_i^{(0)} + \sum_{j=1}^{m} \alpha_{ij} \xi_j + \sum_{k=1}^{m} \sum_{j=k}^{m} \beta_{ijk} \xi_j \xi_k + \ldots \]

Data structure that describes a chemical model + associated uncertainty

\[\eta_r(\mathbf{x}) \approx \eta_{r,0} + \sum_{i=1}^{N} a_{r,i} x_i + \sum_{i=1}^{N} \sum_{j \geq i}^{N} b_{r,ij} x_i x_j \]

Represents some physics model, e.g. PREMIX

\[\eta_r(\mathbf{x}, \xi) = \eta_r(\mathbf{x}^{(0)}) + \sum_{i=1}^{m} \hat{\alpha}_{r,i} \xi_i + \sum_{i=1}^{m} \sum_{j=i}^{m} \hat{\beta}_{r,ij} \xi_i \xi_j \]

Predictions of a chemical model (e.g. laminar flame speed) + associated uncertainty

Sheen et al. (2009)
Multispecies Time Histories
(Model Uncertainties)

300 ppm \(nC_7H_{16} \) / 3300 ppm \(O_2 \) / Ar (\(T_5 = 1494 \text{ K}, p_5 = 2.15 \text{ atm} \))

JetSurF 1.0 is quite accurate
Multispecies Time Histories
(Model Uncertainties)

300 ppm nC_7H_{16} / 3300 ppm O$_2$ / Ar ($T_5 = 1494$ K, $p_5 = 2.15$ atm)

JetSurF 1.0 is quite accurate... but aren’t we lucky!
Multispecies Time Histories
(Model Uncertainties)

300 ppm nC_7H_{16} / 3300 ppm O$_2$ / Ar ($T_5 = 1365$ K, $p_5 = 2.35$ atm)

Even less precise towards lower T_5.

Multispecies Time Histories
Analyses of Experimental Uncertainties

300 ppm \(nC_7H_{16} / 3300 \text{ ppm } O_2 / \text{ Ar} \)
\(T_5 = 1494 \text{ K}, p_5 = 2.15 \text{ atm} \)

300 ppm \(nC_7H_{16} / 3300 \text{ ppm } O_2 / \text{ Ar} \)
\(T_5 = 1365 \text{ K}, p_5 = 2.35 \text{ atm} \)

Dashed lines: \(\pm 10 \text{K} \) \(T_5 \) uncertainty; dotted lines: \(\pm 20\% \) uncertainty on species concentration
Method of Uncertainty Minimization (MUM-PCE)

\[\Phi \left(x^{(0)*} \right) = \min_{x^{(0)}} \sum_{r=1}^{M} \left[\eta_{r,0}^{\text{obs}} - \eta_r \left(x^{(0)} \right) \right]^2 \left(\sigma_r^{\text{obs}} \right)^2 \]

\[\eta_r^{\text{obs}} (\xi) = \eta_{r,0}^{\text{obs}} + \sigma_r^{\text{obs}} \xi_r \]

\[x_i = x_i^{(0)} + \sum_{j=1}^{m} \alpha_{ij} \xi_j \]

\[\eta_r (x, \xi) = \eta_r \left(x^{(0)} \right) + \sum_{i=1}^{m} \hat{\alpha}_{r,i} \xi_i + \sum_{i=1}^{m} \sum_{j=1}^{m} \hat{\beta}_{r,ij} \xi_i \xi_j \]

\[\Phi_{\alpha} \left(\alpha^* \right) \approx \min_{\{\alpha\}} \sum_{r=1}^{M} \frac{1}{\left(\sigma_r^{\text{obs}} \right)^2} \left\{ \sum_{i=1}^{M} \left[\sigma_r^{\text{obs}} \delta_{ir} - \hat{\alpha}_{r,i} \right]^2 + \sum_{i=1}^{M} \sum_{j=1}^{M} \hat{\beta}_{r,ij} \right\} \]

Sheen, et al. (2009)
Method of Uncertainty Minimization (MUM-PCE)

\[\Phi\left(x^{(0)*} \right) = \min_{x^{(0)}} \sum_{r=1}^{M} \left[\eta_{r,0}^{\text{obs}} - \eta_r \left(x^{(0)} \right) \right]^2 \]

\[\eta_{r}^{\text{obs}} (\xi) = \eta_{r,0}^{\text{obs}} + \sigma_{r}^{\text{obs}} \xi_r \]

\[x_i = x_i^{(0)} + \sum_{j=1}^{m} \alpha_{ij} \xi_j + \sum_{k=1}^{m} \sum_{j=k}^{m} \beta_{ijk} \xi_j \xi_k + \ldots \]

\[\eta_r \left(x, \xi \right) = \eta_r \left(x^{(0)} \right) + \sum_{i=1}^{m} \hat{\alpha}_{r,i} \xi_i + \sum_{i=1}^{m} \sum_{j=i}^{m} \hat{\beta}_{r,ij} \xi_i \xi_j \]

\[\Phi_{\alpha\beta} \left(\alpha^*, \beta^*, \ldots \right) = \min_{\{\alpha, \beta, \ldots\}} \sum_{r=1}^{M} \frac{1}{\sigma_r^{\text{obs}}} \left\{ \sum_{i=1}^{M} \left[\sigma_{r}^{\text{obs}} \delta_{ir} - \hat{\alpha}_{r,i} \right]^2 + \sum_{i=1}^{M} \sum_{j=i}^{M} \hat{\beta}_{r,ij} + \ldots \right\} \]

1-atm C₂H₄-air mixtures

Egolfopoulos & Law (1990)
Faeth & co-workers (1998)
Law & co-workers (2005)

Sheen, et al. (2009)
Multispecies Time Histories
Model Precision Improved by the data

300 ppm $n\text{C}_7\text{H}_{16}$ / 3300 ppm O$_2$ / Ar ($T_5 = 1494$ K, $p_5 = 2.15$ atm)
Multispecies Time Histories

Impact on Flame Speed Predictions

n-heptane-air mixtures ($p = 1$ atm, $T_0 = 353$ K)
Multispecies Time Histories
Effect of Experimental Uncertainties

\(n \)-heptane-air mixtures \((p = 1 \text{ atm}, T_0 = 353 \text{ K})\)

![Graph showing uncertainty in species value, \(2\sigma^{\text{obs}}\)]

- \(\phi = 1.0\)
- \(\phi = 1.4\)

![Graph showing uncertainty in species value, \(2\sigma^{\text{obs}}\)]

- CH\(_3\) (Series 2) only
- OH (Series 1) only
- All multi-species (Series 1 & 2)
Multispecies Time Histories

Effect of Experimental Uncertainties

n-heptane-air mixtures ($p = 1$ atm, $T_0 = 353$ K)

(a) unconstrained – prior model

(b) posterior model (±20%)

(c) posterior model (±5% - hypothetical)
Model is Accurate, and (Looks) Precise (Too) with constrained joint parameter uncertainties

\[n\text{-heptane-air mixtures (} p = 1 \text{ atm, } T_0 = 353 \text{ K)} \]

Diagram showing:
- (a) Unconstrained – prior model
- (b) 2 sets of OH, H₂O, CO₂ profiles
- (d) 2 sets of OH, H₂O, CO₂ profiles

Graphs plot:
- Flame Speed (cm/s) vs. Equivalence Ratio, \(\phi \)
Model is Accurate, and *(Looks) Precise *(Too)* with constrained joint parameter uncertainties*

Open diamond: Smith et al. (2005); filled circles: Davidson et. al. (2010)
Joint Parameter Uncertainties

Multispecies Global properties Multispecies+ Global properties

\[\text{H}_2 + \text{O}_2 \leftrightarrow \text{O} + \text{OH} \]

\[\text{H}_2 \text{O} + \text{H}_2 \leftrightarrow \text{H}_2 \text{O}_2 + \text{H}_2 \]

\[\text{C}_2\text{H}_5 + \text{O}_2 \leftrightarrow \text{CH}_2\text{CHO} + \text{O} \]
Onset of OH emission. Lines: JetSurF v1.1 predictions.

Onset of OH emission. Lines: JetSurF v1.1 predictions
Onset of OH* emission. Lines: JetSurF v1.1 predictions.
Cyclohexane Low-Temperature Chemistry

Miller, Taatjes (2009)

Onset of OH⁺ emission. Lines: JetSurf v2.0 predictions.
Onset of OH emission. Lines: JetSurF v2.0 predictions.
Cyclohexane Ring-Opening Reaction

\[k \ (s^{-1}) = 5 \times 10^{16} \exp\left[-\frac{88 \text{ kcal/mol}}{RT} \right] \] (Tsang 1978)
Methylcyclohexane Ring-Opening Reaction

\[
\begin{align*}
\text{CH}_3 & \quad \rightarrow \quad \text{CH}_3 \\
\text{H}_3\text{C} & \quad \text{CH} = \text{CH}_2 \\
\text{H}_3\text{C} & \quad \text{CH}_3
\end{align*}
\]
Ring-Opening Reactions

CBS-QB3 energy

\[\Delta H_0 = 89.8 \text{ kcal/mol} \]

\[\Delta H_0 = 79.0 \text{ kcal/mol} \]
$E_a = 71 \text{ kcal/mol}$

$E_a = 88 \text{ kcal/mol}$
• JetSurF 2.0 is available online (still needs work).

• Major improvement from version 1.1
 • Added low temperature of cyclohexane

• Unresolved problems
 • Low-temperature chemistry for \textit{n}-butylcyclohexane not yet implemented
 • Kinetics of alkylated cyclohexane thermal decomposition (ring opening through the carbene mechanism) currently unavailable)