Detailed Studies on the Oxidation of Surrogate Fuel Components, Surrogate Mixtures and Real Fuels

Kenneth Brezinsky
Department of Mechanical and Industrial Engineering
University of Illinois at Chicago

2011 MURI AFOSR Annual Presentation
Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels

MULTI AGENCY COORDINATION COMMITTEE FOR COMBUSTION RESEARCH (MACCCR)
FUELS RESEARCH REVIEW
Argonne National Laboratory, Argonne, IL
September 21nd, 2011
Motivation

- Develop an experimental and kinetic modeling validation database at high pressures and high temperatures for
 - Individual surrogate fuel components
 - n-alkanes, iso-alkanes and aromatics
 - Surrogate fuel component mixtures
 - Jet A POSF 4658
Experimental Approach

- Provide high pressure experimental data and speciation data for
 - Oxidation and pyrolysis of individual surrogate fuel components
 - Iso-octane
 - n-decane
 - n-dodecane
 - n-propylbenzene
 - 1,3,5-trimethylbenzene
 - Oxidation of 1st generation surrogate mixture
 - iso-octane/decane/toluene
 - Oxidation of 2nd generation surrogate mixture
 - iso-octane/n-dodecane/n-propylbenzene/1,3,5-trimethylbenzene
 - Oxidation of Jet A POSF 4658
- Comparison of speciation data between Jet A POSF 4658 and 1st and 2nd generation surrogates
- Measurement of polycyclic aromatic hydrocarbons (PAHs), precursors to soot
Modeling Approach

• Testing published models against high pressure experimental results of
 – Iso-octane, decane, dodecane, and 1st generation surrogate
• Advanced detailed modeling of iso-octane, decane and dodecane based on speciation data
• Develop models for oxidation and pyrolysis of alkylaromatics
 – n-Propylbenzene and 1,3,5-trimethylbenzene
• Testing published soot models against the experimentally measured PAHs
• Advanced detailed modeling of PAHs leading to soot formation
High Pressure Single Pulse Shock Tube (HPST)

- HPST Operating Conditions
 - Temperatures: 800 - 2500 K
 - Pressures: 15 – 1000 bar
 - Reaction times: 1.0 – 4.0 ms
- Single Pulse Shock Tube heated to 100°C

- Analytical Setup
 - Stable species analyzed using the GCs
 - TCD and FID x2 (used for quantification)
 - MS (used only for identification)
 - GC transfer lines heated to 150°C
Carbon Totals and Measured Species

- **Common species found in the oxidation and pyrolysis experiments of all the three fuels**
 - Major intermediates:
 - C1: CO, CO$_2$, Methane (CH$_4$),
 - C2: Ethene (C$_2$H$_4$), Ethane (C$_2$H$_6$), Acetylene (C$_2$H$_2$),
 - C4: Vinylacetylene (C$_4$H$_4$), Diacetylene (C$_4$H$_2$),
 - C6: Triacetylene (C$_6$H$_2$), Benzene (C$_6$H$_6$),
 - C7: Toluene (C$_6$H$_5$CH$_3$), Benzaldehyde (C$_6$H$_5$CHO),
 - C8: Styrene (C$_6$H$_5$C$_2$H$_3$)
 - Minor intermediates:
 - C3: Allene (C$_3$H$_4$), Propyne (C$_3$H$_4$),
 - C4: 1,3-Butadiene (C$_4$H$_6$),
 - C5: Cyclopentadiene (C$_5$H$_6$),
 - C8: Phenylacetylene (C$_6$H$_5$C$_2$H),

New Set-Up: Direct connection between the HPST and the GC system

Average Carbon Recovery: 90% with the New Set-Up
Species Specific to the Fuel

- **n-Propylbenzene**
 - Bibenzyl
 - Stilbene
 - Benzofuran

- **m-xylene**
 - 1,2-Di-p-tolylethane
 - 2,2’-Dimethylbiphenyl
 - Biphenylene

- **1,3,5-Trimethylbenzene**
 - 1-Ethynyl-4-methylbenzene
 - 1-Ethyl-3,5-dimethylbenzene
 - 1-Ethenyl-3,5-dimethylbenzene
 - 3,3’,5,5’-Tetramethylbibenzyl
 - 2,4,6-Trimethylbiphenyl

- **m-Ethylbenzaldehyde**
 - 3,5-Dimethylbenzaldehyde
 - m-Ethylbenzaldehyde
 - 1-Ethynyl-4-methylbenzene
 - 1-Ethyl-3,5-dimethylbenzene
 - 1-Ethenyl-3,5-dimethylbenzene
 - 3,3’,5,5’-Tetramethylbibenzyl
 - 2,4,6-Trimethylbiphenyl
Species Specific to the Fuel

1,3,5-Trimethylbenzene

1,3-Dimethylnaphthalene

Ethenylantracene

3,6-Dimethylphenanthrene

9-Phenylantracene

Cyclopentaphenantrene

Fluorantrene

1,2-Benzantracene

2,3-Benzofluorene

Methylfluorantrene

Chrysene
n-Propylbenzene Oxidation Modeling

- UIC n-Propylbenzene Oxidation Model (CNF submission, in press)
 - C0-C8 chemistry from Jet Fuel Surrogate Model\(^1\)
 - n-Propylbenzene oxidation chemistry
 - Rate constants of oxidation reactions based on analogous reactions of propane\(^2\)
 and toluene\(^3-7\)
 - 26 reactions
 - Polycyclic aromatic hydrocarbon chemistry (PAH)
 - Rate constants estimated for formation of indene from fuel radicals(8 reactions)
 - Reactions for formation of naphthalene, ethynynaphthalene and anthracene
 formation from Slavinskaya and Frank\(^8\) (61 reactions)
 - Reactions for formation of diphenylmethane, benzofuran and fluorene from Ranzi\(^9\)
 (13 reactions)

9. E. Ranzi, High temperature mechanism (C1-C16), http://www.chem.polimi.it/CRECKModeling
n-Propylbenzene Oxidation Model Results

Analysis of the Simulation

- Model shows good agreement for the decay of the fuel, O$_2$, CO and CO$_2$
- Model shows good agreement for the formation of other major intermediates such as toluene and styrene
n-Propylbenzene Oxidation Model Results

Analysis of the Simulation

- Model shows good agreement with indene and bibenzyl profiles.
- The model shows satisfactory agreement with the profiles of most of the other two ringed and three ringed compounds.

average P5 = 50 atm

[Symbols] Experimental Data [Lines] UIC n-Propylbenzene Oxidation Model
1,3,5-Trimethylbenzene Oxidation Modeling

UIC m-Xylene Oxidation Model

- Sequential oxidation reactions of 1,3,5-trimethylbenzene
- Methyl side chain abstraction reactions of 1,3,5-trimethylbenzene

UIC 1,3,5-Trimethylbenzene Model

- UIC 1,3,5-Trimethylbenzene Oxidation Model developed to predict single ring aromatic hydrocarbons and aliphatic compounds from fuel
- Rate constants of the oxidation reactions of 1,3,5-trimethylbenzene based on analogous reactions of m-xylene
 - 41 reactions
- Thermochemical data of 1,3,5-trimethylbenzene and its intermediates computed using group additivity and density functional theory (B3LYP/6-31G(d))
 - 12 species

1,3,5-Trimethylbenzene Oxidation Model Results

Analysis of the Simulation

- Models show satisfactory agreement for the decay of the fuel, O_2, CO and CO_2.
- Model shows formation of toluene and benzene at higher temperatures when compared to experiments.
- Possibility of other pathways for the fuel decay.
1st and 2nd Generation Surrogates versus Jet A POSF 4658

Temperature Range
904-1760 K

Pressure Range
18-35 atm

Mole Fraction (ppm)

Reflected Shock Temperature

Jet A 4658 1st Generation Surrogate 2nd Generation Surrogate
1st and 2nd Generation Surrogates versus Jet A POSF 4658

\begin{align*}
\text{Jet A 4658} & \quad \circ \quad \text{1st Generation Surrogate} \quad \Delta \quad \text{2nd Generation Surrogate}
\end{align*}
1st and 2nd Generation Surrogates Fuel Decay
Comparison with Single-Component Fuels

1st Generation Surrogate

\[P = 21-33 \text{ atm} \]

- n-Decane
- iso-Octane
- Toluene

Reflected Shock Temperature /K

Carbon Balance

n-dodecane, n-decane, iso-octane, n-propylbenzene, and 1,3,5-trimethylbenzene oxidation data
n-Dodecane Experimental Data and Modeling

Additional species not shown for this experimental data set
- ethane, propene, propadiene, propyne, 1-butene, 1,3-butadiene, 1-pentene, 1,3-pentadiene, benzene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene

n-Decane Experimental Data and Modeling

- Additional species not shown for this experimental data set
 - ethane, propene, propadiene, propyne, 1-butene, 1,3-butadiene, 1-pentene, 1,3-pentadiene, benzene, 1-hexene, 1-heptene, 1-octene, 1-nonene

iso-Octane Experimental Data

![Graph showing the mole fraction of various compounds vs. reflected shock temperature (K).]

- CH₄
- C₂H₄
- C₂H₆
- C₂H₂
- C₃H₆
- aC₃H₄
- pC₃H₄
- C₄H₈

Mole Fraction / ppm vs. Reflected Shock Temperature / K

[] Line Connected Experimental Data

P5avg = 54 atm
iso-Octane Modeling

- **Original iso-Octane Sub-Model**
 - 1st Generation Surrogate Model by Dooley et al.1 with n-decane2 reactions removed
 - C\textsubscript{0}-C\textsubscript{4} mechanism from Metcalfe et al.3
 - iso-Octane (C\textsubscript{5}-iC\textsubscript{8}) reactions from Mehl et al.4
 - Toluene reactions from Metcalfe et al.3
- **Revised iso-Octane Sub-Model**
 - Additional C\textsubscript{1}-C\textsubscript{2} reactions from Gudiyella et al.5
 - Replaced iC\textsubscript{7}H\textsubscript{14} reactions using Chaos et al.6
 - Replaced key C\textsubscript{0}-C\textsubscript{4} reaction in the base mechanism

iso-Octane Pyrolysis Modeling

- Experimental Data
- Original Sub-Model
- Revised Sub-Model

CH₄

C₂H₂

C₄H₈

C₆H₆

C₄H₆

C₇H₁₄

Reflected Shock Temperature /K

[] Line Connected Modeling Data

P5avg = 60 atm
Extended Analytical Setup (GCxGC)
DURIP funded instrument

- Extended analytical setup
 - LECO GCxGC system
 - 2 x FID detectors
 - Agilent 7890A system
 - 1 x FID, 1 x TCD
Analytical Capabilities

- GCxGC 2-D chromatogram of JP-8 obtained at UIC

DURIP Funded GCxGC LECO System
Experiments Summary

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Φ</th>
<th>Avg. Pressure /atm</th>
<th>Temperature /K</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-propylbenzene</td>
<td>0.5-2.0, ∞</td>
<td>25-50</td>
<td>910-1678</td>
</tr>
<tr>
<td>1,3,5-trimethylbenzene</td>
<td>0.5-2.0, ∞</td>
<td>25-50</td>
<td>845-1663</td>
</tr>
<tr>
<td>iso-octane</td>
<td>0.5-2.0, ∞</td>
<td>25-50</td>
<td>837-1672</td>
</tr>
<tr>
<td>n-decane</td>
<td>0.5-2.0, ∞</td>
<td>50</td>
<td>984-1718</td>
</tr>
<tr>
<td>n-dodecane</td>
<td>0.5-2.0, ∞</td>
<td>25-58</td>
<td>867-1739</td>
</tr>
<tr>
<td>1st Gen. surrogate</td>
<td>1.0 & >1</td>
<td>25 & 50</td>
<td>875-1749</td>
</tr>
<tr>
<td>2nd Gen. surrogate</td>
<td>1.0</td>
<td>25 & 50</td>
<td>910-1760</td>
</tr>
<tr>
<td>Jet A POSF 4658</td>
<td><1.0</td>
<td>25</td>
<td>901-1750</td>
</tr>
</tbody>
</table>
Experiments Summary

- Speciation data obtained for all the fuels
- Jet A 4658 and 1st and 2nd generation surrogates
 - Similar reactivity (O_2, CO, CO_2) between the surrogates and the real fuel
 - Similar small species (C_1-C_3) concentrations
- Polycyclic aromatic species up to 5 rings quantified in alkylaromatic experiments
 - Common two ringed and three ringed polycyclic aromatic hydrocarbons identified for all fuels
 - Formation of 4 ringed and 5 ringed aromatic hydrocarbons dependent on fuel structure
Modeling Summary

• Tested the published model against the
 – Oxidation data of decane and dodecane
• Revised the model for oxidation of iso-octane
• Importance of pyrolytic chemistry for n-alkane and iso-alkane components
• Developed chemical kinetic models for
 – Oxidation of n-propylbenzene and 1,3,5-trimethylbenzene
Future Work

- **Experiments**
 - Lean and rich oxidation experiments of the 1st and 2nd Generation Surrogate (n-dodecane/iso-octane/1,3,5-trimethylbenzene/n-propylbenzene) at 25 and 50 atm
 - Jet A POSF 4658, JP-8 oxidation experiments

- **Modeling**
 - 1,3,5-Trimethylbenzene Oxidation Model:
 - Additional steps: intermediate formation
 - Include the polycyclic aromatic hydrocarbon chemistry
 - Refinement and validation of the n-decane/n-dodecane sub-model and contribute to development of the 2nd generation surrogate model
Acknowledgements

- AFOSR, financial sponsor through MURI FA9550-07-1-0515, PI: Professor F.L. Dryer
- AFOSR DURIP, Dr. J. Tishkoff
- HPST Laboratory Students - Soumya Gudiyella, Tom Malewicki, Andrea Comandini, Alex Fridlyand