Flow Reactor Studies of Oxidation and Pyrolysis of Jet Fuel Components at Intermediate Temperatures

C. T. Bowman and S. Banerjee

High Temperature Gasdynamics Laboratory
Mechanical Engineering Department
Stanford University
methyl palmitate ♦, n-decane Δ

Variable Pressure Flow Reactor

- Pressures 1-10 bar
- $T < 1300 \text{ K}$
- Residence times 5-100 ms
Reactor Flow Field Characterization

- Axial and radial mean velocity profiles and turbulence intensity using hot wire anemometry.

- Axial and radial mean temperature profiles using thermocouples.

- Scalar mixing profiles using tracer injection.

- Comparison of data with CFD simulations using Fluent.
Different approaches to mixing and reaction "time zero" issues:

- "Time shifting"
- "Initialization"
- Simultaneous model of mixing and reacting processes

One-dimensional mixing-reacting model based on reactor flow conditions and measured temperature profiles.

Only a single mixing parameter is needed.

Boundary layer correction from centerline velocity measurements.
Reacting Flow Model

Zwietering Mixing-Reacting Flow Model used to simulate flow – one empirical mixing parameter

Model validated using a single-step irreversible first-order reaction

\[\text{C}_2\text{H}_5\text{Cl} \rightarrow \text{C}_2\text{H}_4 + \text{HCl} \]
Representative Jet Fuel Properties

<table>
<thead>
<tr>
<th>JP8 Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Weight</td>
<td>152</td>
</tr>
<tr>
<td>Appx Formula</td>
<td>C_{11}H_{21}</td>
</tr>
<tr>
<td>Boiling Range</td>
<td>140-300 C</td>
</tr>
<tr>
<td>Sp. Grav. At 15 C</td>
<td>0.81</td>
</tr>
</tbody>
</table>

JP8 Composition

- n-Paraffins: 29%
- i-Paraffins: 30%
- Cyclo-Alkane: 21%
- Aromatics: 20%
Species Profiles – Oxidation Experiment

\[\phi = 1.3, \ T_0 = 1220K, \ P = 1 \text{ bar} \]

- Rapid reaction of dodecane
- Rapid alkene formation
- Slower formation of CH\textsubscript{4}
Species Profiles – Oxidation Experiment

Comparison of data with JetSurf 2.0
Species Profiles – Oxidation Experiment

Comparison of data with CNRS Mechanism
1. Dodecane primarily undergoes H-abstraction by O/OH/H to form dodecyl radicals.
2. Dodecyl undergoes β-scission to break into C₄-C₁₁ alkenes and corr. alkyl radicals.
3. The higher alkenes undergo pyrolysis or H-abstraction followed by β-scission to break up into smaller alkenes and alkyl radicals.
4. Diagram shows early stages (1ms) when 50% Dodecane has been converted.
Species Profiles – Pyrolysis Experiment

![Graph showing species profiles over time](image-url)

- **c2h4_CNRS**
- **ch4_CNRS**
- **c3h6_CNRS**
- **C2H4_wet(%)**
- **CH4_wet(%)**
- **C3H6_wet(%)**
- **C2H4_JetSurf**
- **CH4_JetSurf**
- **C3H6_JetSurf**
- **nc12h26_CNRS**
- **NC12H26_JetSurf**
Species Profiles – Pyrolysis Experiment
1. Dodecane primarily undergoes H-abstraction by O/OH/H to form dodecyl radicals.
2. Dodecyl undergoes β-scission to break into C₄-C₁₁ alkenes and cor. alkyl radicals.
3. The higher alkenes undergo pyrolysis or H-abstraction followed by β-scission to break up into smaller alkenes and alkyl radicals.
4. Diagram shows early stages (1ms) when 50% Dodecane has been converted.
Conclusions and Future Directions

- Decomposition of dodecane to alkenes in oxidation experiments at temperatures greater than 1000K is very fast so that heat release (and final product formation) is controlled by oxidation of hydrocarbon fragments from dodecane decomposition.

- The reaction pathways to hydrocarbon fragments are similar in both dodecane oxidation and pyrolysis.

- Future experiments will involve oxidation and pyrolysis of other jet fuel components (cycloalkanes, iso-alkanes and aromatics) to identify reaction pathways and to validate detailed reaction models.