Kinetics Database Logo     Home
©NIST, 2023
Accessibility information
Kinetics Database Resources

Simple Reaction Search

Search Reaction Database

Search Bibliographic Database

Set Unit Preferences

Contact Us to Submit an Article



Other Databases

NIST Standard Reference Data Program

NIST Chemistry Web Book

NDRL-NIST Solution Kinetics Database

NIST Computational Chemistry Comparison and Benchmark Database

The NIST Reference on Constants, Units, and Uncertainty


Administrative Links

DOC home page

NIST home page

MML home page

Chemical Sciences Division

Applied Chemicals and Materials Division

Author(s):   Villano, S. M.; Carstensen, H. H.; Dean, A. M.
Title:   Rate Rules, Branching Ratios, and Pressure Dependence of the HO2 + Olefin Addition Channels
Journal:   J. Phys. Chem. A
Volume:   117
Page(s):   6458 - 6473
Year:   2013
Reference type:   Journal article
Squib:   2013VIL/CAR6458-6473

Reaction:   CH3CH=CH2 + HO2(CH3)2CHO2
Reaction order:   2
Temperature:   300 - 1500 K
Rate expression:   1.07x10-16 [cm3/molecule s] (T/298 K)3.23 e-23430 [J/mole]/RT
Category:  Theory
Data type:   Transition state theory
Pressure dependence:   Rate constant is high pressure limit
Comments:   Reaction potential energy surface was studied using quantum chemistry and rate constants were calculated using transition state theory with tunneling correction. Rate rules were developed for addition of the hydroperoxy radical to olefins.

View full bibliographic record.

Rate constant values calculated from the Arrhenius expression:

T (K)k(T) [cm3/molecule s]
300 9.11E-21
400 2.41E-19
500 2.03E-18
600 9.36E-18
700 3.01E-17
800 7.67E-17
900 1.66E-16
1000 3.19E-16
1100 5.61E-16
1200 9.20E-16
1300 1.43E-15
1400 2.12E-15
1500 3.02E-15